山东省莱芜莱城区五校联考2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第1页
山东省莱芜莱城区五校联考2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第2页
山东省莱芜莱城区五校联考2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第3页
山东省莱芜莱城区五校联考2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第4页
山东省莱芜莱城区五校联考2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,△ABC的顶点在网格的格点上,则tanA的值为()A. B. C. D.2.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.3.如图,在□ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为()A.3:5 B.2:3 C.3:4 D.3:24.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或25.若点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,则当y≥0时,x的取值范围是()A.﹣1<x<3 B.x<﹣1或x>3 C.﹣1≤x≤3 D.x≤﹣1或x≥36.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A. B. C. D.7.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()A.2cm B.4cm C.6cm D.8cm8.在中,,,则的值为()A. B. C. D.9.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.10.如图,将绕点旋转得到,设点的坐标为,则点的坐标为()A. B.C. D.11.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限12.下列事件中,是必然事件的是()A.抛掷一枚硬币正面向上 B.从一副完整扑克牌中任抽一张,恰好抽到红桃C.今天太阳从西边升起 D.从4件红衣服和2件黑衣服中任抽3件有红衣服二、填空题(每题4分,共24分)13.数据1、2、3、2、4的众数是______.14.比较三角函数值的大小:sin30°_____cos30°(填入“>”或“<”).15.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.16.如图,在正方形中,以为边作等边,延长,分别交于点,连接、、与相交于点,给出下列结论:①;②;③;④,其中正确的是__________.17.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___个.18.在平面直角坐标系中,反比例函数的图象经过点,,则的值是__________.三、解答题(共78分)19.(8分)先化简,再求值:,其中.20.(8分)某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.21.(8分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.(1)求抛物线的表达式;(2)求的正切值;(3)如果点是抛物线上的一点,且,试直接写出点的坐标.22.(10分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).23.(10分)操作:在△ABC中,AC=BC=4,∠C=90°,将一块直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。如图①、②、③是旋转三角板得到的图形中的3种情况。探究:(1)如图①,PD⊥AC于D,PE⊥BC于E,则重叠部分四边形DCEP的面积为___,周长___.(2)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②加以证明;(3)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。24.(10分)某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:售价x(元件)1011121314x销售量y(件)100908070(1)将上面的表格填充完整;(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?25.(12分)如图,抛物线与轴交于,两点.(1)求该抛物线的解析式;(2)若抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由26.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,CD=,AD=2,tanA=,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.3、A【分析】证得△ADP∽△RBP,可得,由AD=BC,可得.【详解】∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故选:A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的对应线段成比例.4、D【分析】当a=b时,可得出=2;当a≠b时,a、b为一元二次方程x2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入=中即可求出结论.【详解】当a=b时,=1+1=2;

当a≠b时,∵a、b满足a2-6a+2=0,b2-6b+2=0,

∴a、b为一元二次方程x2-6x+2=0的两根,

∴a+b=6,ab=2,

∴==1.

故选:D.【点睛】此题考查根与系数的关系,分a=b及a≠b两种情况,求出的值是解题的关键.5、C【分析】根据点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,可以求得c的值,从而可以得到该抛物线的解析式,然后令y=0,求得抛物线与x轴的交点,然后根据二次函数的性质即可得到当y≥0时,x的取值范围.【详解】解:∵点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,∴0=﹣3(﹣1﹣1)2+c,得c=12,∴y=﹣3(x﹣1)2+12,当y=0时,﹣3(x﹣1)2+12=0,解得:x1=﹣1,x2=3,又∵-3<0,抛物线开口向下,∴当y≥0时,x的取值范围是﹣1≤x≤3,故选:C.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.6、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.7、B【分析】根据点在圆上,点到圆心的距离等于圆的半径求解.【详解】∵⊙O的半径为4cm,点P在⊙O上,∴OP=4cm.故选:B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.8、C【解析】在中,先求出的度数,再根据特殊角的三角函数值即可得出答案.【详解】,=故选C.【点睛】本题考查了锐角三角函数,熟练掌握特殊角的三角函数值是解题的关键.9、B【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率.【详解】根据题意可得所有的线段有15条,长度为的线段有AE、AC、FD、FB、EC、BD共6条,则P(长度为的线段)=.故选:B【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.10、B【分析】由题意可知,点C为线段A的中点,故可根据中点坐标公式求解.对本题而言,旋转后的纵坐标与旋转前的纵坐标互为相反数,(旋转后的横坐标+旋转前的横坐标)÷2=-1,据此求解即可.【详解】解:∵绕点旋转得到,点的坐标为,∴旋转后点A的对应点的横坐标为:,纵坐标为-b,所以旋转后点的坐标为:.故选:B.【点睛】本题考查了旋转变换后点的坐标规律探求,属于常见题型,掌握求解的方法是解题的关键.11、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,

∴反比例函数y=的图象分布在一、三象限.

故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.12、D【分析】必然事件是指在一定条件下一定会发生的事件,根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币正面向上,是随机事件,故本选项错误;

B、从一副完整扑克牌中任抽一张,恰好抽到红桃,是随机事件.故本选项错误;

C、今天太阳从西边升起,是不可能事件,故本选项错误;

D、从4件红衣服和2件黑衣服中任抽3件有红衣服,是必然事件,故本选项正确.

故选:D.【点睛】本题考查了事件发生的可能性,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、1【分析】根据众数的定义直接解答即可.【详解】解:数据1、1、3、1、4中,∵数字1出现了两次,出现次数最多,∴1是众数,故答案为:1.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.14、<【分析】直接利用特殊角的三角函数值分别代入比较得出答案.【详解】解:∵sin30°=,cos30°=.∴sin30°<cos30°.故答案为:<.【点睛】本题主要考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题关键.15、小林【详解】观察图形可知,小林的成绩波动比较大,故小林是新手.

故答案是:小林.16、①②③④【分析】①正确.利用直角三角形30度角的性质即可解决问题;②正确,通过计算证明∠BPD=135°,即可判断;③正确,根据两角相等两个三角形相似即可判断;④正确.利用相似三角形的性质即可证明.【详解】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ABC=∠ADC=∠BCD=90°,

∴∠ABE=∠DCF=90°-60°=30°,在和中,,∴,∴,∴在中,∠A=90°,∠ABE=30°,∴,故①正确;∵PC=CD,∠PCD=30°,

∴∠PDC=∠DPC=75°,∴∠BPD=∠BPC+∠DPC=60°+75°=135°,故②正确;∵∠ADC=90°,∠PDC=75°,

∴∠EDP=∠ADC-∠PDC=90°-75°=15°,

∵∠DBA=45°,∠ABE=30°,

∴∠EBD=∠DBA-∠ABE=45°-30°=15°,

∴∠EDP=∠EBD=15°,

∵∠DEP=∠BED,

∴△PDE∽△DBE,故③正确;∵△PDE∽△DBE,∴,∴,故④正确;综上,①②③④都正确,故答案为:①②③④.【点睛】本题考查相似三角形的判定和性质,等边三角形的性质,正方形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识.17、1【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中黄色球可能有x个.根据题意,任意摸出1个,摸到黄色乒乓球的概率是:15%=,解得:x=1.∴袋中黄色球可能有1个.故答案为:118、【分析】将点B的坐标代入反比例函数求出k,再将点A的坐标代入计算即可;【详解】(1)将代入得,k==-6,所以,反比例函数解析式为,将点的坐标代入得所以m=,故填:.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知待定系数法求解析式.三、解答题(共78分)19、;.【分析】根据分式的运算法则即可化简,再代入a即可求解.【详解】解:原式把代入上式,得:原式【点睛】此题主要考查分式的运算,解题的关键是熟知分式运算法则.20、.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果.【详解】解:画树状图如下:共有9种等可能的结果数,其中两次摸出的球的颜色相同的结果数为3,所以过关的概率是=.【点睛】本题的考点是树状图法.方法是根据题意画出树状图,由树状图得出答案.21、(1);(2);(2)点的坐标是或【分析】(1)先求得抛物线的对称轴方程,然后再求得点C的坐标,设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入求得a的值即可;

(2)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB、AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;

(2)记抛物线与x轴的另一个交点为D.先求得D(1,0),然后再证明∠DBO=∠CAB,从而可证明∠CAO=ABD,故此当点P与点D重合时,∠ABP=∠CAO;当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设BE=t,则PE=2t,P(-2t,2+t),将P(-2t,2+t)代入抛物线的解析式可求得t的值,从而可得到点P的坐标.【详解】解:(1)抛物线的对称轴为x=-=-1.

∵a<0,

∴抛物线开口向下.

又∵抛物线与x轴有交点,

∴C在x轴的上方,

∴抛物线的顶点坐标为(-1,4).

设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入得:4a+4=0,解得:a=-1,

∴抛物线的解析式为y=-x2-2x+2.

(2)将x=0代入抛物线的解析式得:y=2,

∴B(0,2).

∵C(-1,4)、B(0,2)、A(-2,0),

∴BC=,AB=2,AC=2,

∴BC2+AB2=AC2,

∴∠ABC=90°.

∴.即的正切值等于.

(2)如图1所示:记抛物线与x轴的另一个交点为D.

∵点D与点A关于x=-1对称,

∴D(1,0).

∴tan∠DBO=.

又∵由(2)可知:tan∠CAB=.

∴∠DBO=∠CAB.

又∵OB=OA=2,

∴∠BAO=∠ABO.

∴∠CAO=∠ABD.

∴当点P与点D重合时,∠ABP=∠CAO,

∴P(1,0).

如图2所示:当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.

∵BF∥AO,

∴∠BAO=∠FBA.

又∵∠CAO=∠ABP,

∴∠PBF=∠CAB.

又∵PE∥BF,

∴∠EPB=∠PBF,

∴∠EPB=∠CAB.

∴tan∠EPB=.

设BE=t,则PE=2t,P(-2t,2+t).

将P(-2t,2+t)代入抛物线的解析式得:y=-x2-2x+2得:-9t2+6t+2=2+t,解得t=0(舍去)或t=.

∴P(-,).

综上所述,点P的坐标为P(1,0)或P(-,).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含t的式子表示点P的坐标是解题的关键.22、广告牌的高度为54.6米.【分析】由题可知:,,,先得到CD=CB,在三角形ACD中,利用正切列出关于CD的等式并解出,从而求出BC的值,加上AB的值得到AC的值,在三角形ACE中利用正切得到CE的长度,最后用CE-CD即为所求.【详解】解:∵又,在中,即答:广告牌的高度为54.6米.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的关键.23、(1)4,8;(1)证明见详解;(3)CE=0或1或或;【分析】(1)根据点P是AB的中点可判断出PD、PE是△ABC的中位线,继而可得出PD、PE的长度,也可得出四边形DCEP的周长和面积.(1)先根据图形可猜测PD=PE,从而连接CP,通过证明△PCD≌△PEB,可得出结论.(3)题目只要求是等腰三角形,所以需要分四种情况进行讨论,这样每一种情况下的CE的长也就不难得出.【详解】解:(1)根据△ABC中,AC=BC=4,∠C=90°,∵PD⊥AC,PE⊥BC,∴PD∥BC,PE∥AC,又∵点P是AB中点,∴PD、PE是△ABC的中位线,∴PD=CE=1,PE=CD=1,∴四边形DCEP是正方形,面积为:1×1=4,周长为:1+1+1+1=8;故答案为:4,8(1)PD=PE;证明如下:AC=BC,∠C=90°,P为AB中点,连接CP,∴CP平分∠C,CP⊥AB,∵∠PCB=∠B=45°,∴CP=PB,∵∠DPC+∠CPE=∠CPE+∠EPB=90°,∴∠DPC=∠EPB,在△PCD和△PEB中,,∴△PCD≌△PBE(ASA),∴PD=PE.(3)△PBE是等腰三角形,∵AC=BC=4,∠ACB=90°,∴,∴PB=;①PE=PB时,此时点C与点E重合,CE=0;②当PB=BE时,如图,E在线段BC上,CE=;③当PB=BE时,如图,E在CB的延长线上,CE=;④当PE=BE时,此时,点E是BC中点,则CE=1.综合上述,CE的长为:0或1或或;【点睛】本题考查了旋转的性质、等腰三角形的性质与判定,第三问的解答应分情况进行论证,不能漏解,有一定难度.24、(1)见解析;(2)w=﹣10x2+280x﹣1600;(3)售价为14元时,获得最大利润,最大利润是360元.【分析】(1)设y=kx+b,由待定系数法可列出方程组:,解得:则y=﹣10x+200,当x=14时,y=60.(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售价为14元时,获得最大利润,最大利润是360元.【详解】解:(1)设销售量y(件)与每件售价x(元)满足一次函数关系为y=kx+b,∴,解得:,∴销售量y(件)与每件售价x(元)满足一次函数关系为y=﹣10x+200,当x=14时,y=60,故答案为:60,﹣10x+200;(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论