版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.用配方法解一元二次方程,变形正确的是()A. B. C. D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2 B.2 C.±2 D.03.如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连AC、BC,若∠P=80°,则的∠ACB度数为()A.40° B.50° C.60° D.80°4.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球 B.摸出的是3个黑球C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球5.二次函数y=3(x–2)2–5与y轴交点坐标为()A.(0,2) B.(0,–5) C.(0,7) D.(0,3)6.如图是某个几何体的三视图,则该几何体是(
)A.长方体 B.圆锥 C.圆柱 D.三棱柱7.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(
)A.9分 B.8分 C.7分 D.6分8.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是A. B. C. D.9.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°10.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是().A.3 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是_____.12.已知线段、满足,则________.13.代数式有意义时,x应满足的条件是______.14.已知点在直线上,也在双曲线上,则m2+n2的值为______.15.已知圆锥的底面半径为2cm,侧面积为10πcm2,则该圆锥的母线长为_____cm.16.如图是一个圆锥的展开图,如果扇形的圆心角等于90°,扇形的半径为6cm,则圆锥底面圆的半径是______cm.17.已知正方形ABCD的边长为,分别以B、D为圆心,以正方形的边长为半径在正方形内画弧,得到如图所示的阴影部分,若随机向正方形ABCD内投掷一颗石子,则石子落在阴影部分的概率为_____.(结果保留π)18.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.三、解答题(共66分)19.(10分)“校园读诗词诵经典比赛”结束后,评委刘老师将此次所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下图:扇形统计图频数直方图(1)参加本次比赛的选手共有________人,参赛选手比赛成绩的中位数在__________分数段;补全频数直方图.(2)若此次比赛的前五名成绩中有名男生和名女生,如果从他们中任选人作为获奖代表发言,请利用表格或画树状图求恰好选中男女的概率.20.(6分)如果一条抛物线与坐标轴有三个交点.那么以这三个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)命题“任意抛物线都有抛物线三角形”是___________(填“真”或“假”)命题;(2)若抛物线解析式为,求其“抛物线三角形”的面积.21.(6分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.22.(8分)在平面直角坐标系xOy中,抛物线().(1)写出抛物线顶点的纵坐标(用含a的代数式表示);(2)若该抛物线与x轴的两个交点分别为点A和点B,且点A在点B的左侧,AB=1.①求a的值;②记二次函数图象在点
A,B之间的部分为W(含
点A和点B),若直线
()经过(1,-1),且与
图形W
有公共点,结合函数图象,求
b
的取值范围.23.(8分)已知关于x的方程x2﹣(m+2)x+2m=1.(1)若该方程的一个根为x=1,求m的值;(2)求证:不论m取何实数,该方程总有两个实数根.24.(8分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想——转化,即把未知转化为已知来求解.用“转化”的数学思想,我们还可以解一些新的方程.例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解.再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:.因为,且,所以不是原方程的根,是原方程的解.(1)问题:方程的解是,__________,__________;(2)拓展:求方程的解.25.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,4)、B(-4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为点C,连接AC,求S△ABC.26.(10分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据完全平方公式和等式的性质进行配方即可.【详解】解:故选:B.【点睛】本题考查了配方法,其一般步骤为:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.2、B【解析】试题解析:是关于的二次函数,解得:故选B.3、B【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】解:连接OA、OB,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣80°=100°,∴∠ACB=∠AOB=×100°=50°.故选:B.【点睛】本题考查圆的切线,关键在于牢记圆切线常用辅助线:连接切点与圆心.4、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.5、C【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.6、B【分析】根据几何体的三视图,可判断出几何体.【详解】解:∵主视图和左视图是等腰三角形∴此几何体是锥体∵俯视图是圆形∴这个几何体是圆锥故选B.【点睛】此题主要考查了几何体的三视图,关键是利用主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.7、C【解析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8、A【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9、C【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.10、B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题(每小题3分,共24分)11、4【解析】根据垂径定理以及勾股定理即可求答案.【详解】连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:4【点睛】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.12、【解析】此题考查比例知识,答案13、.【解析】直接利用二次根式的定义和分数有意义求出x的取值范围.【详解】解:代数式有意义,可得:,所以,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.14、1【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.详解:∵点P(m,n)在直线y=-x+2上,∴n+m=2,∵点P(m,n)在双曲线y=-上,∴mn=-1,∴m2+n2=(n+m)2-2mn=4+2=1.故答案为1.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间的关系是解题关键.15、5【解析】根据圆的周长公式求出圆锥的底面周长,根据圆锥的侧面积的计算公式计算即可.【详解】设圆锥的母线长为Rcm,圆锥的底面周长=2π×2=4π,则×4π×R=10π,解得,R=5(cm)故答案为5【点睛】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、【分析】把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,解得:r=cm,故答案为.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.17、【分析】先求出空白部分面积,进而得出阴影部分面积,再利用石子落在阴影部分的概率=阴影部分面积÷正方形面积,进而得出答案.【详解】∵扇形ABC中空白面积=,∴正方形中空白面积=2×(2﹣)=4﹣π,∴阴影部分面积=2﹣(4﹣π)=π﹣2,∴随机向正方形ABCD内投掷一颗石子,石子落在阴影部分的概率=.故答案为:.【点睛】本题主要考查扇形的面积公式和概率公式,通过割补法,求出阴影部分面积,是解题的关键.18、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.三、解答题(共66分)19、(1)50;;补图见解析;(2).【分析】(1)利用比赛成绩在的人数除以所占的百分比即可求出参加本次比赛的选手的人数,然后利用总人数乘比赛成绩在所占的百分比,即可求出成绩在的人数,从而求出成绩在的人数和成绩在的人数,最后根据中位数的定义即可求出中位数;(2)根据题意,画出树状图,然后根据概率公式求概率即可.【详解】解:(1),所以参加本次比赛的选手共有人,频数直方图中“”这两组的人数为人,所以频数直方图中“”这一组的人数为人“”这一组的人数为人中位数是第和第位选手成绩的平均值,即在“”分数段故答案为:;;补全条形统计图如下所示:(2)画树状图为:共有种等可能的结果数,其中恰好选中男女的结果数为,所以恰好选中男女的概率.【点睛】此题考查的是条形统计图、扇形统计图和求概率问题,掌握结合条形统计图和扇形统计图得出有用信息和利用树状图求概率是解决此题的关键.20、(1)假;(2)3【分析】(1)判定是真假命题,要看抛物线与坐标轴交点的个数,当有3个交点时是真命题,有两个或一个交点时不能构成三角形.(2)先求抛物线与坐标轴的交点坐标,再求面积即可.【详解】解:(1)假命题.如果抛物线与x坐标轴没有交点时,不能形成三角形.(2)抛物线解析式为与轴交点坐标为,与轴交点坐标为,“抛物线三角形”的面积为【点睛】本题考查了抛物线的性质,再求抛物线与坐标轴的交点组成的三角形的面积.21、(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3).【解析】(1)①连接AC,证明△ABP≌△ACE,根据全等三角形的对应边相等即可证得BP=CE;②根据菱形对角线平分对角可得,再根据△ABP≌△ACE,可得,继而可推导得出,即可证得CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,利用(1)的方法进行证明即可;(3)连接AC交BD于点O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的长,AP长,由△APE是等边三角形,求得,的长,再根据,进行计算即可得.【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;②CE⊥AD,∵菱形对角线平分对角,∴,∵△ABP≌△ACE,∴,∵,∴,∴,∴,∴CF⊥AD,即CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD仍然成立;(3)连接AC交BD于点O,CE,作EH⊥AP于H,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,,∴∠ABO=30°,∴,BO=DO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵,,∴,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等边三角形,∴,,∵,∴,===,∴四边形ADPE的面积是.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键.22、(1)1a+8;(2)①a=-1;②或或【分析】(1)将原表达式变为顶点式,即可得到答案;(2)①根据顶点式可得抛物线的对称轴是x=1,再根据已知条件得到A、B两点的坐标,将坐标代入,即可得到a的值;②分情况讨论,当
()经过(1,-1)和A(-1,0)时,以及当
()经过(1,-1)和B(3,0)时,代入解析式即可求出答案.【详解】(1)==所以顶点坐标为(1,1a+8),则纵坐标为1a+8.(2)①解:∵原解析式变形为:y=∴抛物线的对称轴是x=1又∵抛物线与x轴的两个交点分别为点A和点B,AB=1∴点A和点B各距离对称轴2个单位∵点A在点B的左侧∴A(-1,0),B(3,0)∴将B(3,0)代入∴9a-6a+5a+8=0a=-1②当
()经过(1,-1)和A(-1,0)时,当
()经过(1,-1)和B(3,0)时,∴或或【点睛】本题考查了二次函数、一次函数的综合性题目,数形结合是解答此题的关键.23、(2)2;(2)见解析【分析】(2)将x=2代入方程中即可求出答案.(2)根据根的判别式即可求出答案.【详解】(2)将x=2代入原方程可得2﹣(m+2)+2m=2,解得:m=2.(2)由题意可知:△=(m+2)2﹣4×2m=(m﹣2)2≥2,不论m取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用根的判别式,本题属于基础题型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年慢病综合征的评估
- 2024农民承包土地合同书
- 专题 07课内阅读(所有课内片段阅读) -2022-2023学年五年级语文下册期末专项复习(部编版)
- 2024简易维修合同格式
- 2024常用房屋装修合同范本
- 2024建筑工程专业分包合同
- 2024建筑工程承包施工合同书格式
- 2024工地运输合同参考范文
- 计算机编程培训课程
- 关于实习生实习报告模板集锦7篇
- GB 19517-2023国家电气设备安全技术规范
- 年度安全生产费用提取和使用情况报告
- 施工现场临时水电消防监理细则
- 山东东营市商业市场调研
- 固体物理章晶体缺陷
- 高中思想政治-高三一轮复习为人民服务的政府教学设计学情分析教材分析课后反思
- 中建光伏项目管理指导手册
- IVUS指导PCI的应用课件
- 高压电力用户报装容量测算方法
- 医科大学课件:《传染病学-第七章-原虫病-第三节-黑热病》
- 护栏有限公司液化气瓶安全风险分级管控清单
评论
0/150
提交评论