山东省菏泽市曹县2022年数学九上期末学业质量监测试题含解析_第1页
山东省菏泽市曹县2022年数学九上期末学业质量监测试题含解析_第2页
山东省菏泽市曹县2022年数学九上期末学业质量监测试题含解析_第3页
山东省菏泽市曹县2022年数学九上期末学业质量监测试题含解析_第4页
山东省菏泽市曹县2022年数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将二次函数化为的形式,结果为()A. B.C. D.2.两个相似多边形的面积之比是1:4,则这两个相似多边形的周长之比是()A.1:2 B.1:4 C.1:8 D.1:163.二次函数的图象与轴有且只有一个交点,则的值为()A.1或-3 B.5或-3 C.-5或3 D.-1或34.(2017广东省卷)如图,在同一平面直角坐标系中,直线与双曲线相交于两点,已知点的坐标为,则点的坐标为()A. B. C. D.5.如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)6.如图,在中,,于点D,,,则AD的长是()A.1. B. C.2 D.47.如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE与BC相切于点E,连接BD,则阴影部分的面积为()A.π B. C.π+2 D.+48.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是A. B. C. D.9.点P(3,5)关于原点对称的点的坐标是()A.(﹣3,5) B.(3,﹣5) C.(5,3) D.(﹣3,﹣5)10.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70° B.80° C.110° D.140°11.向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第秒 B.第秒 C.第秒 D.第秒12.下列方程是一元二次方程的是()A.3x2+=0 B.(3x-1)(3x+1)=3C.(x-3)(x-2)=x2 D.2x-3y+1=0二、填空题(每题4分,共24分)13.在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为_______千米.14.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.15.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是弧AB的中点,若扇形的半径为,则图中阴影部分的面积等于_____.16.如果等腰△ABC中,,,那么______.17.如图,,分别是边,上的点,,若,,,则______.18.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣的图象上,则y1与y2的大小关系是_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.20.(8分)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)21.(8分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.请根据图象中的信息解决下列问题:(1)求与之间的函数表达式;(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?22.(10分)如图,已知二次函数y=x2﹣4x+3图象与x轴分别交于点B、D,与y轴交于点C,顶点为A,分别连接AB,BC,CD,DA.(1)求四边形ABCD的面积;(2)当y>0时,自变量x的取值范围是.23.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=1.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(1)如图1,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.24.(10分)先化简,再求值:,其中﹣2≤a≤2,从中选一个你喜欢的整数代入求值.25.(12分)如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.(1)求二次函数解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.26.如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.

参考答案一、选择题(每题4分,共48分)1、D【分析】化,再根据完全平方公式分解因式即可.【详解】∵∴故选D.【点睛】解答本题的关键是熟练掌握完全平方公式:,注意当二次项系数为1时,常数项等于一次项系数一半的平方.2、A【解析】分析:根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比可得.解:∵两个相似多边形面积比为1:4,∴周长之比为=1:1.故选B.点睛:相似多边形的性质,相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.3、B【分析】由二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,可知△=0,继而求得答案.【详解】解:∵二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,∴△=b2-4ac=[-(m-1)]2-4×1×4=0,∴(m-1)2=16,解得:m-1=±4,∴m1=5,m2=-1.∴m的值为5或-1.故选:B.【点睛】此题考查了抛物线与x轴的交点问题,注意掌握二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.4、A【分析】过原点的直线与反比例函数图象的交点关于原点成中心对称,由此可得B的坐标.【详解】与相交于A,B两点∴A与B关于原点成中心对称∵∴故选择:A.【点睛】熟知反比例函数的对称性是解题的关键.5、C【分析】如图连接BF交y轴于P,由BC∥GF可得=,再根据线段的长即可求出GP,PC,即可得出P点坐标.【详解】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例.6、D【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根据同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可证得△ACD∽△CBD,然后利用相似三角形的对应边成比例,即可求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD∽△CBD.7、A【分析】连接OE交BD于F,如图,利用切线的性质得到OE⊥BC,再证明四边形ODCE和四边形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根据扇形的面积公式,利用阴影部分的面积=S扇形EOD计算即可.【详解】连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC.∵四边形ABCD为矩形,OA=OD=2,而CD=2,∴四边形ODCE和四边形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴阴影部分的面积=S扇形EOD.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形面积公式.8、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形;

B、不是轴对称图形,是中心对称图形;

C、是轴对称图形,也是中心对称图形;

D、不是轴对称图形,也不是中心对称图形.

故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图重合.9、D【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.【详解】解:点P(3,5)关于原点对称的点的坐标是(-3,-5),

故选D.【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.10、C【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11、C【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,∴抛物线的对称轴为:秒,∵第12秒距离对称轴最近,∴上述时间中,第12秒时炮弹高度最高;故选:C.【点睛】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.12、B【分析】根据一元二次方程的定义,二次项系数不能等于0,未知数最高次数是2的整式方程,即可得到答案.【详解】解:A、不是整式方程,故本项错误;B、化简得到,是一元二次方程,故本项正确;C、化简得到,是一元一次方程,故本项错误;D、是二元一次方程,故本项错误;故选择:B.【点睛】本题考查了一元二次方程的定义,熟记定义是解题的关键.二、填空题(每题4分,共24分)13、1【解析】根据比例尺=图上距离:实际距离.根据比例尺关系即可直接得出实际的距离.【详解】根据比例尺=图上距离:实际距离,得:A,B两地的实际距离为2.6×1000000=100000(cm)=1(千米).故答案为1.【点睛】本题考查了线段的比.能够根据比例尺正确进行计算,注意单位的转换.14、.【分析】根据三角形的面积公式求出BC边上的高=3,根据△ADE∽△ABC,求出正方形DEFG的边长为2,根据等于高之比即可求出MN.【详解】解:作AQ⊥BC于点Q.∵AB=AC=3,∠BAC=90°,∴BC=AB=6,∵AQ⊥BC,∴BQ=QC,∴BC边上的高AQ=BC=3,∵DE=DG=GF=EF=BG=CF,∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=AD=2,∵△AMN∽△AGF,DE边上的高为1,∴MN:GF=1:3,∴MN:2=1:3,∴MN=.故答案为.【点睛】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大,作辅助线AQ⊥BC是解题的关键.15、π﹣1【分析】根据扇形的面积公式求出面积,再过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,然后证明△CMG与△CNH全等,从而得到中间空白区域的面积等于以1为对角线的正方形的面积,从而得出阴影部分的面积.【详解】两扇形的面积和为:,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,如图,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是的正方形面积,∴空白区域的面积为:,∴图中阴影部分的面积=两个扇形面积和﹣1个空白区域面积的和.故答案为:π﹣1.【点睛】本题主要考查了扇形的面积求法,三角形的面积的计算,全等三角形的判定和性质,得出四边形EMCN的面积是解决问题的关键.16、;【分析】过点作于点,过点作于点,由于,所以,,根据勾股定理以及锐角三角函数的定义可求出的长度.【详解】解:过点作于点,过点作于点,,,,AB=AC=3,BE=EC=1,BC=2,又∵,∴BD=,,∵,∴,故答案为:.【点睛】本题考查解直角三角形,涉及锐角三角函数的定义,需要学生灵活运用所学知识.17、1【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【详解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.18、y1<y1【分析】由k=-1可知,反比例函数y=﹣的图象在每个象限内,y随x的增大而增大,则问题可解.【详解】解:∵反比例函数y=﹣中,k=﹣1<0,∴此函数在每个象限内,y随x的增大而增大,∵点A(1,y1),B(1,y1)在反比例函数y=﹣的图象上,1>1,∴y1<y1,故答案为y1<y1.【点睛】本题考查了反比例函数的增减性,解答关键是注意根据比例系数k的符号确定,在各个象限内函数的增减性解决问题.三、解答题(共78分)19、(1)A(﹣3,0),B(1,0);(2)M(4,7);﹣2≤m≤4;(3)点P的坐标为P(﹣1,4)或(﹣1,).【分析】(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,即可求解;(2)分∠MAO=45°,∠M′AO=45°两种情况,分别求解即可;(3)分当BD是矩形的边,BD是矩形的边两种情况,分别求解即可.【详解】(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,故点A、B的坐标分别为:(﹣3,0),(1,0);(2)抛物线的表达式为:y=(x+3)(x﹣1)①,当∠MAO=45°时,如图所示,则直线AM的表达式为:y=x②,联立①②并解得:m=x=4或﹣3(舍去﹣3),故点M(4,7);②∠M′AO=45°时,同理可得:点M(﹣2,﹣1);故:﹣2≤m≤4;(3)①当BD是矩形的对角线时,如图2所示,过点Q作x轴的平行线EF,过点B作BE⊥EF,过点D作DF⊥EF,抛物线的表达式为:y=ax2+2ax﹣3a,函数的对称轴为:x=1,抛物线点A、B的坐标分别为:(﹣3,0)、(1,0),则点P的横坐标为:1,OB=1,而CD=4BC,则点D的横坐标为:﹣4,故点D(﹣4,5a),即HD=5a,线段BD的中点K的横坐标为:,则点Q的横坐标为:﹣2,则点Q(﹣2,﹣3a),则HF=BE=3a,∵∠DQF+∠BQE=90°,∠BQE+∠QBE=90°,∴∠QBE=∠DQF,∴△DFQ∽△QEB,则,,解得:a=(舍去负值),同理△PGB≌△DFQ(AAS),∴PG=DF=8a=4,故点P(﹣1,4);②如图3,当BD是矩形的边时,作DI⊥x轴,QN⊥x轴,过点P作PL⊥DI于点L,同理△PLD≌△BNQ(AAS),∴BN=PL=3,∴点Q的横坐标为4,则点Q(4,21a),则QN=DL=21a,同理△PLD∽△DIB,∴,即,解得:a=(舍去负值),LI=26a=,故点P(﹣1,);综上,点P的坐标为:P(﹣1,4)或(﹣1,).【点睛】本题主要考查的是二次函数综合运用,涉及到矩形的性质、图形的全等和相似等,其中(2)、(3),要注意分类求解,避免遗漏.20、(1)证明见解析(2)2【解析】试题分析:(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.试题解析:(1)∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.考点:1.矩形的性质;2.菱形的判定与性质3.三角函数.21、(1);(2);(3)步数之差最多是厘米,【分析】(1)用待定系数法即可求得反比例函数的解析式;(2)即求当时的函数值;(3)先求得当时的函数值,再判断当时的函数值的范围.【详解】(1)设反比例函数解析式为,将,代入解析式得:,解得:,反比例函数解析式为;(2)将代入得;(3)反比例函数,在每一象限随增大而减小,当时,,解得:,当时,,步数之差最多是厘米.【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握反比例函数图象上点的坐标特征是正确解答本题的关键.22、(1)4;(2)x>3或x<1.【分析】(1)四边形ABCD的面积=×BD×(xC﹣xA)=×2×(3+1)=4;(2)从图象可以看出,当y>0时,自变量x的取值范围是:x>3或x<1,即可求解.【详解】(1)函数y=x2﹣4x+3图象与x轴分别交于点B、D,与y轴交于点C,顶点为A,则点B、D、C、A的坐标分别为:(3,0)、(1,0)、(0,3)、(2,﹣1);四边形ABCD的面积=×BD×(xC﹣xA)=×2×(3+1)=4;(2)从图象可以看出,当y>0时,自变量x的取值范围是:x>3或x<1,故答案为:x>3或x<1.【点睛】本题考查二次函数的图形和性质,解题时需注意将四边形的面积转化为三角形的面积进行计算,四边形ABCD的面积=×BD×(xC﹣xA).23、(1)y=﹣x2+x+1;(2)D的坐标为(1,1);(1)【分析】(1)通过抛物线y=先求出点A的坐标,推出OA的长度,再由tan∠CAO=1求出OC的长度,点C的坐标,代入原解析式即可求出结论;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证△DZE≌△DWB,得到DZ=DW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【详解】解:(1)在抛物线y=中,当y=0时,x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,∵tan∠CAO=1,∴OC=1OA=1,∴C(0,1),∴a=1,∴a=2,∴抛物线的解析式为:y=﹣x2+x+1;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,∵∠ZDW=∠EDB=90°,∴∠ZDE=∠WDB,∵∠DZE=∠DWB=90°,DE=DB,∴△DZE≌△DWB(AAS),∴DZ=DW,设点D(k,﹣k2+k+1),∴k=﹣k2+k+1,解得,k1=﹣(舍去),k2=1,∴D的坐标为(1,1);(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,∵sin∠DGH=∴设HI=4m,HG=5m,则IG=1m,由题意知,四边形OCDH是正方形,∴CD=DH=1,∵∠CDQ+∠IDH=90°,∠IDH+∠DHI=90°,∴∠CDQ=∠DHI,又∵∠CQD=∠DIH=90°,∴△CQD≌△DIH(AAS),设DI=n,则CQ=DI=n,DQ=HI=4m,∴IQ=DQ﹣DI=4m﹣n,∴GQ=GI﹣IQ=1m﹣(4m﹣n)=n﹣m,∵∠GCQ+∠QCD=90°,∠QCD+∠CDQ=90°,∴∠GCQ=∠CDQ,∴△GCQ∽△CDQ,∴∴∴n=2m,∴CQ=DI=2m,∴IQ=2m,∴tan∠CDG=,∵CD=1,∴CG=,∴GO=CO﹣CG=,设直线DG的解析式为y=kx+,将点D(1,1)代入,得,k=,∴yDG=,设点F(t,﹣t2+t+1),则﹣t2+t+1=t+,解得,t1=1(舍去),t2=﹣,∴F(﹣,)过点F作DC的垂线,交DC的延长线于点U,则,∴在Rt△UFD中,DF=,由翻折知,△NPM≌△NPT,∴∠MNP=∠TNP,NM=NT=ND,∠TPN=∠MPN,TP=MP,又∵NS⊥KD,∴∠DNS=∠TNS,DS=TS,∴∠SNK=∠TNP+∠TNS=×90°=45°,∴∠SKN=45°,∵∠TPK=180°﹣∠TPN,∠MPK=180°﹣∠MPN,∴∠TPK=∠MPK,又∵PK=PK,∴△TPK≌△MPK(SAS),∴∠MKP=∠TKP=45°,∴∠DKM=∠MKP+∠TKP=90°,连接FN,DM,交点为R,再连接RK,则RK=RF=RD=RN=RM,则点F,D,N,M,K同在⊙R上,FN为直径,∴∠FKN=90°,∠KDN=∠KFN,∵FN=,∴在Rt△FKN中,∴cos∠KDN=cos∠KFN.【点睛】考核知识点:二次函数综合题.熟记二次函数基本性质,数形结合分析问题是关键.24、,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出的值,代入计算即可求出值.【详解】解:原式=,∵﹣2≤a≤2,且a为整数,∴a=0,1,﹣2时没有意义,a=﹣1或2,当a=﹣1时,原式=﹣2;当a=2时,原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25、(1)y;(2);(3)(1,-3)或(1,)或(1,1+)或(1,1-)【分析】(1)利用待定系数法求出A、B、C的坐标,然后把B点坐标代入,求出a的值,并化简二次函数式即可;(2)设点M的坐标为(m,),则点N的坐标为(2-m),可得,GM=,利用矩形MNHG的周长=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论