2025届浙江省温州市实验学校九上数学期末复习检测模拟试题含解析_第1页
2025届浙江省温州市实验学校九上数学期末复习检测模拟试题含解析_第2页
2025届浙江省温州市实验学校九上数学期末复习检测模拟试题含解析_第3页
2025届浙江省温州市实验学校九上数学期末复习检测模拟试题含解析_第4页
2025届浙江省温州市实验学校九上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省温州市实验学校九上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在中,,,则的值为()A. B. C. D.2.如图,▱ABCD的对角线相交于点O,且,过点O作交BC于点E,若的周长为10,则▱ABCD的周长为A.14 B.16 C.20 D.183.如图,是的直径,点在上,,则的度数为()A. B. C. D.4.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为()A. B. C. D.5.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4(

)A.先向左平移3个单位,再向上平移4个单位 B.先向左平移3个单位,再向下平移4个单位C.先向右平移3个单位,再向上平移4个单位 D.先向右平移3个单位,再向下平移4个单位6.如果,那么下列各式中不成立的是()A.; B.; C.; D.7.如图,二次函数的图象与轴正半轴相交于A、B两点,与轴相交于点C,对称轴为直线且OA=OC,则下列结论:①②③④关于的方程有一个根为其中正确的结论个数有()A.1个 B.2个 C.3个 D.4个8.为测量如图所示的斜坡垫的倾斜度,小明画出了斜坡垫的侧面示意图,测得的数据有:,则该斜坡垫的倾斜角的正弦值是()A. B. C. D.9.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应(

)A.不小于4.8Ω B.不大于4.8Ω C.不小于14Ω D.不大于14Ω10.抛物线y=2(x-1)2-6的对称轴是().A.x=-6 B.x=-1 C.x= D.x=111.对于抛物线,下列说法正确的是()A.开口向下,顶点坐标 B.开口向上,顶点坐标C.开口向下,顶点坐标 D.开口向上,顶点坐标12.如图,将的三边扩大一倍得到(顶点均在格点上),如果它们是以点为位似中心的位似图形,则点的坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.计算:__________.14.如图,矩形中,,,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_________.15.已知∽,若周长比为4:9,则_____________.16.如图,在△ABC中,∠ABC=90°,AB=6,BC=4,P是△ABC的重心,连结BP,CP,则△BPC的面积为_____.17.把配方成的形式为__________.18.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知_____的成绩更稳定.三、解答题(共78分)19.(8分)已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3),D(﹣1,1)是否在该函数图象上,并说明理由.20.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.21.(8分)春节前,某超市从厂家购进某商品,已知该商品每个的成本价为30元,经市场调查发现,该商品每天的销售量(个)与销售单价(元)之间满足一次函数关系,当该商晶每个售价为40元时,每天可卖出300个;当该商晶每个售价为60元时,每天可卖出100个.(1)与之间的函数关系式为__________________(不要求写出的取值范围);(2)若超市老板想达到每天不低于220个的销售量,则该商品每个售价定为多少元时,每天的销售利润最大?最大利润是多少元?22.(10分)如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠B=35°,求∠CAE度数.23.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.24.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组

研究报告

小组展示

答辩

91

80

78

81

74

85

79

83

90

(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?25.(12分)(1)已知a,b,c,d是成比例线段,其中a=2cm,b=3cm,d=6cm,求线段c的长;(2)已知,且a+b﹣5c=15,求c的值.26.(1)解方程:x2+4x﹣1=0(2)计算:cos30°+sin45°

参考答案一、选择题(每题4分,共48分)1、D【分析】在Rt△ABC中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选:D.【点睛】本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等.2、C【解析】由平行四边形的性质得出,,,再根据线段垂直平分线的性质得出,由的周长得出,即可求出平行四边形ABCD的周长.【详解】解:四边形ABCD是平行四边形,,,,,,的周长为10,,平行四边形ABCD的周长;故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.3、B【分析】连接AC,根据圆周角定理,分别求出∠ACB=90,∠ACD=20,即可求∠BCD的度数.【详解】连接AC,

∵AB为⊙O的直径,

∴∠ACB=90°,

∵∠AED=20°,

∴∠ACD=∠AED=20°,

∴∠BCD=∠ACB+∠ACD=90°+20°=110°,

故选:B.【点睛】本题考查的是圆周角定理:①直径所对的圆周角为直角;②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、A【分析】由可得∠APB=90°,根据AB是定长,由定长对定角可知P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,用DO减去圆的半径即可得出最小值.【详解】解:∵,∴∠APB=90°,∵AB=6是定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,如图所示:∵,,∴,由勾股定理得:DO=5,∴,即的长的最小值为2,故选A.【点睛】本题属于综合难题,主要考查了直径所对的角是圆周角的应用:由定弦对定角可得动点的轨迹是圆,发现定弦和定角是解题的关键.5、A【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线的顶点为(0,0),平移后的抛物线顶点为(-3,1),由顶点的平移规律确定抛物线的平移规律.【详解】抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x+3)2+1的顶点坐标为(-3,1),点(0,0)需要先向左平移3个单位,再向上平移1个单位得到点(-3,1).∴抛物线y=2x2先向左平移3个单位,再向上平移1个单位得到抛物线y=2(x+3)2+1.故选A.【点睛】在寻找图形的平移规律时,往往需要把图形的平移规律理解为某个特殊点的平移规律.6、D【解析】试题分析:由题意分析可知:A中,,故不选A;B中,,故不选;C中,;D中,,故选D考点:代数式的运算点评:本题属于对代数式的基本运算规律和代数式的代入分析的求解7、C【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y>0,可判断②;由OA=OC,且OA<1,可判断③;由OA=OC,得到方程有一个根为-c,设另一根为x,则=2,解方程可得x=4+c即可判断④;从而可得出答案.【详解】由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;∵OA=OC,∴方程有一个根为-c,设另一根为x.∵对称轴为直线x=2,∴=2,解得:x=4+c.故④正确;综上可知正确的结论有三个.故选C.【点睛】本题考查了二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.8、A【分析】利用正弦值的概念,的正弦值=进行计算求解.【详解】解:∵∴在Rt△ABC中,故选:A.【点睛】本题考查锐角三角函数的概念,熟练掌握正弦值的概念,熟记的正弦值=是本题的解题关键.9、A【分析】先由图象过点(1,6),求出U的值.再由蓄电池为电源的用电器限制电流不得超过10A,求出用电器的可变电阻的取值范围.【详解】解:由物理知识可知:I=UR,其中过点(1,6),故U=41,当I≤10时,由R≥4.1故选A.【点睛】本题考查反比例函数的图象特点:反比例函数y=kx的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<010、D【解析】根据抛物线的顶点式,直接得出结论即可.【详解】解:∵抛物线y=2(x-1)2-6,

∴抛物线的对称轴是x=1.

故选D.【点睛】本题考查了二次函数的性质,要熟悉二次函数的顶点式:y=a(x-h)2+k(a≠0),其顶点坐标为(h,k),对称轴为x=h.11、A【详解】∵抛物线∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.12、D【分析】根据位似中心的定义作图即可求解.【详解】如图,P点即为位似中心,则P故选D.【点睛】此题主要考查位似中心,解题的关键是熟知位似的特点.二、填空题(每题4分,共24分)13、【分析】本题涉及零指数幂、负整数指数幂、二次根式化简三个考点,在计算时需要针对每个考点分别进行计算,然后再进行加减运算即可.【详解】3-4-1=-2.故答案为:-2.【点睛】本题考查的是实数的运算能力,注意要正确掌握运算顺序及运算法则.14、【分析】阴影部分的面积为扇形BDM的面积加上扇形CDN的面积再减去直角三角形BCD的面积即可.【详解】解:∵,∴根据矩形的性质可得出,∵∴∴利用勾股定理可得出,因此,可得出故答案为:.【点睛】本题考查的知识点是求不规则图形的面积,熟记扇形的面积公式是解此题的关键.15、4:1【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,∴.故答案为:4:1.【点睛】本题考查了相似三角形的性质,牢记相似三角形(多边形)的周长的比等于相似比是解题的关键.16、1【分析】△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,即可求解.【详解】解:△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,(证明见备注)△BEC的面积=S=6,BP=BE,则△BPC的面积=△BEC的面积=1,故答案为:1.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=CG证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=AF,又∵AF=CF,∴HF=CF,∴HF:CF=,∵EH∥BF,∴EG:CG=HF:CF=,∴EG=CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.17、【分析】对二次函数进行配方,即可得到答案.【详解】===.故答案是:.【点睛】本题主要考查二次函数的顶点式,掌握二次函数的配方,是解题的关键.18、甲【分析】根据方差的定义,方差越小数据越稳定.【详解】解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.故答案为甲;【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(共78分)19、(1);(2)C在,D不在,见解析【分析】(1)根据点A的坐标设出二次函数的顶点式,再代入B的值即可得出答案;(2)将C和D的值代入函数解析式即可得出答案.【详解】解:(1)设二次函数的解析式是,∵二次函数的顶点坐标为∴又经过点∴代入得:解得:∴函数解析式为:(2)将x=2代入解析式得∴点在该函数图象上将x=-1代入解析式得∴点不在该函数图象上【点睛】本题考查的是待定系数法求函数解析式,解题关键是根据顶点坐标设出顶点式.20、(1)证明见解析;(2)2;(3).【分析】(1)连接OH、OM,易证OH是△ABC的中位线,利用中位线的性质可证明△COH≌△MOH,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC=,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.【详解】解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点∴OH是△ABC的中位线∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB又∵OB=OM,∴∠OMB=∠MBO∴∠COH=∠MOH,在△COH与△MOH中,∵OC=OM,∠COH=∠MOH,OH=OH∴△COH≌△MOH(SAS)∴∠HCO=∠HMO=90°∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线∴HC=MH=∴AC=2HC=3∵tan∠ABC=,∴=∴BC=4∴⊙O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点I∵AC与AN都是⊙O的切线∴AC=AN,AO平分∠CAD∴AO⊥CN∵AC=3,OC=2∴由勾股定理可求得:AO=∵AC•OC=AO•CI,∴CI=∴由垂径定理可求得:CN=设OE=x,由勾股定理可得:∴,∴x=,∴CE=,由勾股定理可求得:EN=,∴由垂径定理可知:NQ=2EN=.21、(1);(2)该商品每个售价定为48元时,每天的销售利润最大,最大利润是3960元【分析】(1)设y=kx+b,再根据每个售价为40元时,每天可卖出300个;当该商晶每个售价为60元时,每天可卖出100个,列方程组,从而确立y与x的函数关系为y=−10x+700;

(2)设利润为W,则,将其化为顶点式,由于对称轴直线不在之间,应说明函数的增减性,根据单调性代入恰当自变量取值,即可求出最大值.【详解】解:(1)设y与x之间的函数解析式为y=kx+b,

由题意得,,

解得:,

∴y与x之间的函数解析式为y=−10x+700.故答案为.(2)设每天销售利润为元,由题意得由于,得∴又,.当时,随着的增大而增大∴当时,取最大值,最大值为答:该商品每个售价定为48元时,每天的销售利润最大,最大利润是3960元.【点睛】本题考查了一次函数与二次函数的实际应用,同时考查了由二次函数图象的对称性及增减性分析解决实际问题的能力.22、∠CAE=20°.【分析】根据等边对等角求出∠BAD,从而求出∠ADC,在等腰三角形ADC中,由三线合一求出∠CAE.【详解】∵BD=AD,∴∠BAD=∠B=35°,∴∠ADE=∠BAD+∠B=70°,∵AD=AC,∴∠C=∠ADE=70°,∵AD=AC,AE平分DC,∴AE⊥EC,(三线合一).∴∠EAC=90°-∠C=20°.【点睛】本题的解题关键是掌握等边对等角和三线合一.23、(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论