




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广元市重点中学2025届九上数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,AB为⊙O的直径,点C、D在⊙O上,若∠AOD=30°,则∠BCD的度数是()A.150° B.120° C.105° D.75°2.若|m|=5,|n|=7,m+n<0,则m﹣n的值是()A.﹣12或﹣2 B.﹣2或12 C.12或2 D.2或﹣123.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.74.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+=4 D.x2=3x﹣25.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为()A. B. C. D.6.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了().A.10° B.20° C.30° D.60°7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是()A.25° B.30° C.35° D.40°8.关于反比例函数,下列说法正确的是()A.函数图像经过点(2,2); B.函数图像位于第一、三象限;C.当时,函数值随着的增大而增大; D.当时,.9.已知,则下列结论一定正确的是()A. B. C. D.10.抛物线y=2x2,y=﹣2x2,y=2x2+1共有的性质是()A.开口向上 B.对称轴都是y轴C.都有最高点 D.顶点都是原点二、填空题(每小题3分,共24分)11.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).12.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD=_____________13.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于____________.14.如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,则y与x之间的函数关系式为________________.15.计算:________.16.如图,矩形ABCD中,AB=1,AD=.以A为圆心,AD的长为半径做弧交BC边于点E,则图中的弧长是_______.17.已知,则=_____________.18.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.三、解答题(共66分)19.(10分)如图,已知矩形ABCD的周长为12,E,F,G,H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.(1)请直接写出y与x之间的函数关系式;(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.20.(6分)如图,在中,,.用直尺和圆规作,使圆心O在BC边,且经过A,B两点上不写作法,保留作图痕迹;连接AO,求证:AO平分.21.(6分)如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF22.(8分)如图,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分别为D,E,F.(1)求证:CE•CA=CF•CB;(2)EF交CD于点O,求证:△COE∽△FOD;23.(8分)如图,中,,将绕点顺时针旋转得到,使得点的对应点落在边上(点不与点重合),连接.(1)依题意补全图形;(2)求证:四边形是平行四边形.24.(8分)如图,AB是垂直于水平面的一座大楼,离大楼20米(BC=20米)远的地方有一段斜坡CD(坡度为1:0.75),且坡长CD=10米,某日下午一个时刻,在太阳光照射下,大楼的影子落在了水平面BC,斜坡CD,以及坡顶上的水平面DE处(A、B、C、D、E均在同一个平面内).若DE=4米,且此时太阳光与水平面所夹锐角为24°(∠AED=24°),试求出大楼AB的高.(其中,sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)25.(10分)有一个人患了流感,经过两轮传染后共有81人患了流感.每轮传染中平均一个人传染了几个人?按照这样的速度传染,第三轮将又有多少人被传染?26.(10分)如图所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,动点P从点A开始,以1mm/S的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4m/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm1.(1)写出y与x之间的函数表达式;(1)当x=1时,求四边形APQC的面积.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题解析:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故选C.2、C【分析】根据题意,利用绝对值的意义求出m与n的值,再代入所求式子计算即可.【详解】解:∵|m|=5,|n|=7,且m+n<0,∴m=5,n=﹣7;m=﹣5,n=﹣7,可得m﹣n=12或2,则m﹣n的值是12或2.故选:C.【点睛】本题考查了绝对值的意义,掌握绝对值的意义求值是关键.3、B【分析】直接利用相似三角形的性质得出,故,进而得出AM的长即可得出答案.【详解】解:由题意可得:OC∥AB,则△MBA∽△MCO,∴,即解得:AM=1.故选:B.【点睛】此题主要考查了相似三角形的应用,根据题意得出△MBA∽△MCO是解题关键.4、D【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.5、A【分析】根据题意,左视图有两列,左视图所看到的每列小正方形数目分别为3,1.【详解】因为左视图有两列,左视图所看到的每列小正方形数目分别为3,1故选:A.【点睛】本题考查由三视图判断几何体,简单组合体的三视图,解题关键是根据俯视图确定左视图的列数和各列最高处的正方形个数.6、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.7、B【详解】∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故选B.8、C【解析】直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.9、D【分析】应用比例的基本性质,将各项进行变形,并注意分式的性质y≠0,这个条件.【详解】A.由,则x与y的比例是2:3,只是其中一特殊值,故此项错误;B.由,可化为,且y≠0,故此项错误;C.,化简为,由B项知故此项错误;D.,可化为,故此项正确;故答案选D【点睛】此题主要考查了比例的基本性质,正确运用已知变形是解题关键.10、B【详解】(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1).故选B.二、填空题(每小题3分,共24分)11、y=﹣(x﹣1)2+1(答案不唯一)【解析】因为二次函数的顶点坐标为:(-m,k),根据题意图象的顶点位于第一象限,所以可得:m<0,k>0,因此满足m<0,k>0的点即可,故答案为:(答案不唯一).12、80°【详解】解:∵AC是⊙O的切线,∴AB⊥AC,∵∠C=50°,∴∠B=90°﹣∠C=40°,∵OA=OB,∴∠ODB=∠B=40°,∴∠AOD=80°.故答案为80°.13、2【分析】由题意可得EC=2,CF=4,根据勾股定理可求EF的长.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=1.∵△ABE绕点A逆时针旋转后得到△ADF,∴DF=BE=1,∴CF=CD+DF=1+1=4,CE=BC﹣BE=1﹣1=2.在Rt△EFC中,EF.【点睛】本题考查旋转的性质,正方形的性质,勾股定理,熟练运用这些性质解决问题是本题的关键.14、【解析】∵∠BAC=30°,AB=AC,∴∠ACB=∠ABC=,∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°,∴∠ADB=∠CAE.∴△ADB∽△EAC,∴,即,∴.故答案为.15、【分析】根据特殊角的三角函数值直接书写即可.【详解】故答案为:.【点睛】本题考查了特殊角的三角函数值,牢固记忆是解题的关键.16、π【分析】根据题意可得AD=AE=,则可以求出sin∠AEB,可以判断出可判断出∠AEB=45°,进一步求解∠DAE=∠AEB=45°,代入弧长得到计算公式可得出弧DE的长度.【详解】解:∵AD半径画弧交BC边于点E,AD=
∴AD=AE=,
又∵AB=1,
∴∴∠AEB=45°,∵四边形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,
故可得弧DC的长度为==π,
故答案为:π.【点睛】此题考查了弧长的计算公式,解答本题的关键是求出∠DAE的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.17、6【分析】根据等比设k法,设,代入即可求解【详解】∵∴设∴故答案为6【点睛】本题考查比例的性质,遇到等比引入新的参数是解题的关键。18、1.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案为1.【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.三、解答题(共66分)19、(1)y=-x2+3x;(2)当x=3时,y有最大值,为4.5.【解析】分析:(1)由矩形的周长为12,AB=x,结合矩形的性质可得BC=6-x,然后由E,F,G,H为矩形ABCD的各边中点可得四边形EFGH的面积是矩形面积的一半,从而列出函数关系式;(2)由关系式为二次函数以及二次项系数小于0可得四边形EFGH的面积有最大值,然后利用配方法将抛物线的解析式写成顶点式,从而得到x取什么值时,y取得最大值,以及最大值是多少.详解:(1)∵矩形ABCD的周长为12,AB=x,∴BC=×12-x=6-x.∵E,F,G,H为矩形ABCD的各边中点,∴y=x(6-x)=-x2+3x,即y=-x2+3x.(2)y=-x2+3x=-(x-3)2+4.5,∵a=-<0,∴y有最大值,当x=3时,y有最大值,为4.5.点睛:本题是一道有关二次函数应用的题目,解题的关键是依据矩形的性质结合已知列出二次函数关系式,然后利用二次函数的最值解决问题.20、(1)作图见解析;(2)证明见解析.【分析】(1)作线段AB的垂直平分线即可,线段AB的垂直平分与BC的交点即是圆心O;(2)由线段垂直平分线的性质可得∠OAB=∠B=30°,,从而可求∠CAO=30°,由角平分线的定义可知AO平分∠CAB.【详解】(1)解:如图,⊙O为所作;(2)证明:∵OA=OB,∴∠OAB=∠B=30°,而∠CAB=90°﹣∠B=60°,∴∠CAO=∠BAO=30°,∴OC平分∠CAB.【点睛】本题考查了线段垂直平分线的作法及性质,等腰三角形的性质,角平分线的定义,熟练掌握线段垂直平分线的作法及性质是解答本题的关键.21、1.【解析】(1)根据等边三角形性质得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根据SAS证△BAP≌△EAQ,推出∠AEQ=∠ABC=90°;
(1)根据等边三角形性质求出∠ABE=∠AEB=60°,根据∠ABC=90°=∠AEQ求出∠BEF=∠EBF=30°,即可得出答案.(1)解:△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(1)解:∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠AEB=45°=∠ABE,∴AE=AB=,由勾股定理得:BE=,即BC=BE=1.“点睛”本题考查了等边三角形的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用.22、(1)证明见解析;(2)证明见解析【分析】(1)本题首先根据垂直性质以及公共角分别求证△CED∽△CDA,△CDF∽△CBD,继而以为中间变量进行等量替换证明本题.(2)本题以第一问结论为前提证明△CEF∽△CBA,继而根据垂直性质证明∠OFD=∠ECO,最后利用“角角”判定证明相似.【详解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴,即CD2=CE•CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴,即CD2=CB•CF,则CA•CE=CB•CF;(2)∵CA•CE=CB•CF,∴,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD=∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.【点睛】本题考查相似的判定与性质综合,相似判定难点首先在于确定哪两个三角形相似,其次是判定定理的选择,相似判定常用“角角”定理,另外需注意相似图形其潜在信息点是边的比例关系以及角等.23、(1)详见解析;(2)详见解析.【分析】(1)根据旋转的性质作图;(2)由旋转的性质可得,然后根据全等三角形的性质得出,,从而使问题得证.【详解】解:(1)如图:(2)证明:∵绕点顺时针旋转得到,∴,,.∵,∴.∵,∴.∵,∴,∵,∴,∴,∴,又∵,∴四边形是平行四边形.【点睛】本题考查旋转的性质,全等的判定和性质,平行四边形的判定,比较基础,掌握判定定理及其性质正确推理论证是本题的解题关键.24、21.1米.【分析】延长ED交AB于G,作DH⊥BF于H
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大型音乐节参与者疫情防控措施
- 在家庭中学会担当记事作文14篇范文
- 某年度拉挤树脂产业分析报告
- 老年人护理关怀小组及职责
- 高考生物二轮复习(全国版) 第1篇 专题突破 专题2 考点五 光合作用与细胞呼吸速率的测定与分析
- 农田水利建设的文明管理措施
- 基于CPN的INTERBUS总线协议安全性研究与改进
- 难忘的教师节作文六百字(15篇)
- 电信工程施工质量管理措施与安全承诺
- 高三历史备考计划的心理建设
- 毕业设计产品包装设计
- 安徽卷-2025届高考化学全真模拟卷
- 河北省石家庄市2025届普通高中高三教学质量检测(三)英语试卷及答案
- 2025届百师联盟高三下学期二轮复习联考(三)政治试题(含答案)
- 2024年云南省文山州第二人民医院选调工作人员考试真题
- 《埃菲尔铁塔》课件
- 深圳市城市规划标准与准则2024版
- 2025年高考化学三轮冲刺:实验综合大题 刷题练习题(含答案解析)
- 《低空经济及其产业发展-把握机会、布局未来》课件
- 肠梗阻课件教学课件
- 2024年新疆喀什公务员录用考试《行测》真题及答案
评论
0/150
提交评论