版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省利津县联考2025届九上数学期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,点C为弧AB的中点,若(为锐角),则()A. B. C. D.2.如图,已知,且,则()A. B. C. D.3.如图,抛物线的对称轴为,且过点,有下列结论:①>0;②>0;③;④>0.其中正确的结论是()A.①③ B.①④ C.①② D.②④4.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)5.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n-1 C.()n-1 D.n6.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54° B.27° C.36° D.46°7.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为,则得方程()A. B.C. D.8.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100° B.110° C.115° D.120°9.如图,在中,是的直径,点是上一点,点是弧的中点,弦于点,过点的切线交的延长线于点,连接,分别交于点,连接.给出下列结论:①;②;③点是的外心;④.其中正确的是()A.①②③ B.②③④ C.①③④ D.①②③④10.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个 B.2个 C.3个 D.4个11.三角形的一条中位线将这个三角形分成的一个小三角形与原三角形的面积之比等于()A.1: B.1:2 C.1:4 D.1:1.612.用长分别为3cm,4cm,5cm的三条线段可以围成直角三角形的事件是()A.必然事件B.不可能事件C.随机事件D.以上都不是二、填空题(每题4分,共24分)13.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.14.已知正六边形ABCDEF的边心距为cm,则正六边形的半径为________cm.15.二次函数图象的开口向__________.16.函数中,自变量的取值范围是________.17.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是__________.18.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.三、解答题(共78分)19.(8分)如图,在中,,为边上的中线,于点(1)求证:BD·AD=DE·AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求的值.20.(8分)如图,四边形OABC为平行四边形,B、C在⊙O上,A在⊙O外,sin∠OCB=.(1)求证:AB与⊙O相切;(2)若BC=10cm,求图中阴影部分的面积.21.(8分)如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.22.(10分)有一个人患了流感,经过两轮传染后共有196个人患了流感,每轮传染中平均一个人传染了几个人?23.(10分)如图,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的△A1OB1,点A1的坐标为______;(2)在旋转过程中,点B经过的路径的长.24.(10分)如图,在△ABC中,BD平分∠ABC,交AC于点D,点E是AB上一点,连接DE,BD2=BC·BE.证明:△BCD∽△BDE.25.(12分)26.如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.(1)在平面直角坐标系中,若点.①在的点中,是线段的“限距点”的是;②点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围
参考答案一、选择题(每题4分,共48分)1、B【分析】连接BD,如图,由于点C为弧AB的中点,根据圆周角定理得到∠BDC=∠ADC=α,然后根据圆内接四边形的对角互补可用α表示出∠APB.【详解】解:连接BD,如图,∵点C为弧AB的中点,∴弧AC=弧BC,∴∠BDC=∠ADC=α,∴∠ADB=2α,∵∠APB+∠ADB=180°,∴∠APB=180°-2α.故选:B.【点睛】本题考查了弧、弦、圆心角的关系,以及圆内接四边形的性质,熟练掌握圆的性质定理是解答本题的关键.2、D【分析】根据相似三角形的面积比等于相似比的平方即可解决问题.【详解】解:∵,∴,∵,∴,故选:D.【点睛】此题考查相似三角形的性质,解题的关键是熟练掌握相似三角形的性质解决问题,记住相似三角形的面积比等于相似比的平方.3、C【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a<0,
根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,
根据抛物线与y轴的交点在正半轴可得:c>0,
∴abc>0,故①正确;
直线x=-1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以-=-1,可得b=2a,
a-2b+4c=a-4a+4c=-3a+4c,
∵a<0,
∴-3a>0,
∴-3a+4c>0,
即a-2b+4c>0,故②正确;
∵b=2a,a+b+c<0,
∴2a+b≠0,故③错误;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④错误;
故选:C.【点睛】此题考查二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.4、D【解析】分析:直接利用反比例函数图象上点的坐标特点进而得出答案.详解:∵反比例函数y=的图象经过点(3,-2),∴xy=k=-6,A、(-3,-2),此时xy=-3×(-2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(-2,-3),此时xy=-3×(-2)=6,不合题意;D、(-2,3),此时xy=-2×3=-6,符合题意;故选D.点睛:此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.5、B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和,即可求解.【详解】如图作正方形边的垂线,由ASA可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的,即是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故选:B.【点睛】本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.7、C【分析】设调价百分率为x,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x,则:故选:C.【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.8、B【分析】连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.9、B【分析】①由于与不一定相等,根据圆周角定理可判断①;
②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;
③先由垂径定理得到A为的中点,再由C为的中点,得到,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断③;
④正确.证明△APF∽△ABD,可得AP×AD=AF×AB,证明△ACF∽△ABC,可得AC2=AF×AB,证明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判断④;【详解】解:①错误,假设,则,,,显然不可能,故①错误.②正确.连接.是切线,,,,,,,,,故②正确.③正确.,,,,,,是直径,,,,,,,点是的外心.故③正确.④正确.连接.,,,,,,,,可得,,,,可得,.故④正确,故选:.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.10、C【解析】试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选C.考点:平行四边形的判定11、C【分析】中位线将这个三角形分成的一个小三角形与原三角形相似,根据中位线定理,可得两三角形的相似比,进而求得面积比.【详解】根据三角形中位线性质可得,小三角形与原三角形相似比为1:2,则其面积比为:1:4,故选C.【点睛】本题考查了三角形中位线的性质,比较简单,关键是知道面积比等于相似比的平方.12、A【解析】试题解析:用长为3cm,4cm,5cm的三条线段一定能围成一个三角形,则该事件是必然事件.
故选A.二、填空题(每题4分,共24分)13、2【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=214、1【详解】解:如图所示,连接OA、OB,过O作OD⊥AB,∵多边形ABCDEF是正六边形,∴∠OAD=60°,∴OD=OA•sin∠OAB=AO=,解得:AO=1.故答案为1.【点睛】本题考查正多边形和圆,掌握解直角三角形的计算是解题关键.15、下【分析】根据二次函数的二次项系数即可判断抛物线的开口方向.【详解】解:∵,二次项系数a=-6,∴抛物线开口向下,故答案为:下.【点睛】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.16、【分析】根据分式有意义的条件是分母不为0;可得关系式x﹣1≠0,求解可得自变量x的取值范围.【详解】根据题意,有x﹣1≠0,解得:x≠1.故答案为:x≠1.【点睛】本题考查了分式有意义的条件.掌握分式有意义的条件是分母不等于0是解答本题的关键.17、【分析】根据题意可知密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,直接利用概率公式求解即可.【详解】解:∵密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,∴小丽能一次支付成功的概率是.故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、30°【解析】试题解析:∵关于x的方程有两个相等的实数根,∴解得:∴锐角α的度数为30°;故答案为30°.三、解答题(共78分)19、(1)见解析;(2);(3).【分析】(1)先利用等腰三角形的性质证明∠B=∠C,AD⊥BC,然后再证明△BDE∽△CAD即可;(2)利用勾股定理求出AD,再根据(1)的结论即可求出DE;(3)在Rt△BDE中,利用锐角三角函数求解即可.【详解】解:(1)证明:∵AB=AC,AD为BC边上的中线,∴∠B=∠C,AD⊥BC,即∠ADC=90°,又∵DE⊥AB于点E,即∠DEB=90°,∴∠ADC=∠DEB,∴△BDE∽△CAD,∴,∴BD·AD=DE·AC;(2)∵AD为BC边上的中线,BC=10,∴BD=CD=5,在Rt△ABD中,AB=13,BD=5,∴AD=,由(1)得BD·AD=DE·AC,又∵AC=AB=13,∴5×12=13·DE,∴DE=;(3)由(2)知,DE=,BD=5,∴在Rt△BDE中,.【点睛】本题考查了等腰三角形,相似三角形的判定与性质,勾股定理,锐角三角函数,熟练掌握各定理、性质及余弦的定义是解题的关键.20、(1)见解析(2).【分析】连接OB,由sin∠OCB=求出∠OCB=45,再根据OB=OC及三角形的内角和求出∠BOC=90,再由四边形OABC为平行四边形,得出∠ABO=90即OB⊥AB,由此切线得到证明;(2)先求出半径,再由-S△BOC即可求出阴影部分的面积.【详解】连接OB,∵sin∠OCB=,∴∠OCB=45,∵OB=OC,∴∠OBC=∠OCB=45,∴∠BOC=90,∵四边形OABC为平行四边形,∴OC∥AB,∴∠ABO=90,即OB⊥AB,∴AB与⊙O相切;(2)在Rt△OBC中,BC=10,sin∠OCB=,∴,∴-S△BOC=.【点睛】此题考查圆的切线的判定定理、圆中阴影面积的求法,切线的判定口诀:有交点,连半径,证垂直;无交点,作垂直,证半径,熟记口诀并熟练用于解题是关键.在求阴影面积时,直线放在三角形或多边形中,弧线放在扇形中,再根据面积加减的关系求得.21、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分别求出点C,顶点D,点A,B的坐标,如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,证明△BCD是直角三角形,即可由三角形的面积公式求出其面积;(2)先求出直线BD的解析式,设P(a,a2﹣2a﹣3),用含a的代数式表示出直线PC的解析式,联立两解析式求出含a的代数式的点F的坐标,过点C作x轴的平行线,交BD于点H,则yH=﹣3,由△CDF与△BEF的面积相等,列出方程,求出a的值,即可写出E,P的坐标.【详解】(1)在y=x2﹣2x﹣3中,当x=0时,y=﹣3,∴C(0,﹣3),当x=﹣=1时,y=﹣4,∴顶点D(1,﹣4),当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC•BC=×3=3;(2)设直线BD的解析式为y=kx+b,将B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,设P(a,a2﹣2a﹣3),直线PC的解析式为y=mx﹣3,将P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,当y=0时,x=,∴E(,0),联立,解得,,∴F(,),如图2,过点C作x轴的平行线,交BD于点H,则yH=﹣3,∴H(,﹣3),∴S△CDF=CH•(yF﹣yD),S△BEF=BE•(﹣yF),∴当△CDF与△BEF的面积相等时,CH•(yF﹣yD)=BE•(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、一次函数的性质及三角形面积的求解.22、每轮传染中平均一个人传染了13个人.【分析】设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有196人患了流感,列方程求解.【详解】设每轮传染中平均一个人传染了个人,则,即:则,解得:(不合题意,舍去)答:每轮传染中平均一个人传染了13个人.【点睛】此题考查了一元二次方程的应用,读懂题意,准确找到等量关系列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.23、(1)图见解析,点A
1
(-2,3);(2).【解析】试题分析:(1)根据将△AOB绕点O逆时针旋转90°后得到△A1OB1,得出点A1的坐标即可;(2)利用弧长公式求出点B经过的路径长即可.(1)如图,∴点A
1
(-2,3)(2)由勾股定理得,OB=
,∴弧长24、见解析【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《论文写作》课程课件
- 内蒙古鄂尔多斯西部四旗2025届高三下第一次测试数学试题含解析
- 湖北省沙洋县后港中学2025届高考英语五模试卷含解析
- 浙江省乐清市知临中学2025届高三二诊模拟考试英语试卷含解析
- 吉林省长春二中2025届高考数学四模试卷含解析
- 陕西省西安市长安区2025届高三下学期联合考试数学试题含解析
- 2025届天津五区县高考考前提分语文仿真卷含解析
- 现代学徒制课题:市域产教联合体与行业产教融合共同体内开展现场工程师培养的机制创新研究(研究思路模板、技术路线图)
- 2025届四川省德阳五中高考仿真卷语文试卷含解析
- 安徽省安庆市六校2025届高三第六次模拟考试数学试卷含解析
- 2021-2022学年广东省广州市白云区五年级(上)期末英语试卷
- 发酵酸菜加工厂建设项目可行性研究报告
- 包豪斯对现代设计的影响
- 基于分形结构的多频与宽带天线技术研究
- 人间生活-中国部分+课件高中美术湘美版(2019)美术鉴赏1
- YY/T 1771-2021弯曲-自由恢复法测试镍钛形状记忆合金相变温度
- LY/T 1755-2008国家湿地公园建设规范
- JJF 1874-2020(自动)核酸提取仪校准规范
- GB/T 7378-2012表面活性剂碱度的测定滴定法
- GB/T 37762-2019同步调相机组保护装置通用技术条件
- GB/T 36961-2018超高强钢热冲压工艺通用技术
评论
0/150
提交评论