安徽省蚌埠市经济开发区2025届九年级数学第一学期期末考试模拟试题含解析_第1页
安徽省蚌埠市经济开发区2025届九年级数学第一学期期末考试模拟试题含解析_第2页
安徽省蚌埠市经济开发区2025届九年级数学第一学期期末考试模拟试题含解析_第3页
安徽省蚌埠市经济开发区2025届九年级数学第一学期期末考试模拟试题含解析_第4页
安徽省蚌埠市经济开发区2025届九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省蚌埠市经济开发区2025届九年级数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若的半径为3,且点到的圆的距离是5,则点在()A.内 B.上 C.外 D.都有可能2.若点在反比例函数上,则的值是()A. B. C. D.3.一个几何体的三视图如图所示,则这个几何体是()A.球体 B.圆锥 C.棱柱 D.圆柱4.下列事件中是必然发生的事件是()A.投掷一枚质地均匀的骰子,掷得的点数是奇数;B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖;C.掷一枚硬币,正面朝上;D.任意画一个三角形,其内角和是180°.5.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.6.某班七个兴趣小组人数分别为4,4,5,x,1,1,1.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.1 C.5 D.47.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+28.如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A. B. C. D.9.如图,AB为圆O直径,C、D是圆上两点,ADC=110°,则OCB度()A.40 B.50 C.60 D.7010.已知二次函数图象如图所示,对称轴为过点且平行于轴的直线,则下列结论中正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.一元二次方程x2=3x的解是:________.12.某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为______.13.关于x的一元二次方程没有实数根,则实数a的取值范围是.14.若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式___________.15.抛物线y=(x﹣1)(x﹣3)的对称轴是直线x=_____.16.小北同学掷两面质地均匀硬币,抛5次,4次正面朝上,则掷硬币出现正面概率为_____.17.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为______.18.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.三、解答题(共66分)19.(10分)如图,内接于,,是的弦,与相交于点,平分,过点作,分别交,的延长线于点、,连接.(1)求证:是的切线;(2)求证:.20.(6分)已知正比例函数y=k1x(k1≠0)与反比例函数的图象交于A、B两点,点A的坐标为(2,1).(1)求正比例函数、反比例函数的表达式;(2)求点B的坐标.21.(6分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.22.(8分)如图,在直角坐标系中,点A的坐标为(-2,0),OB=OA,且∠AOB=120°.(1)求经过A、O、B三点的抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点C,使△OBC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M、N使得A、O、M、N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.23.(8分)阅读下面材料,完成(1),(2)两题数学课上,老师出示了这样一道题:如图1,在中,,,点为上一点,且满足,为上一点,,延长交于,求的值.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过构造全等三角形,经过进一步推理,就可以求出的值.”……老师:“把原题条件中的‘’,改为‘’其他条件不变(如图2),也可以求出的值.(1)在图1中,①求证:;②求出的值;(2)如图2,若,直接写出的值(用含的代数式表示).24.(8分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.25.(10分)选用合适的方法解下列方程:

(1)x2-7x+10=0(2)3x2-4x-1=0(3)(x+3)2=(1-3x)226.(10分)已知抛物线y=ax2+2x﹣(a≠0)与y轴交于点A,与x轴的一个交点为B.(1)①请直接写出点A的坐标;②当抛物线的对称轴为直线x=﹣4时,请直接写出a=;(2)若点B为(3,0),当m2+2m+3≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,求m的值;(3)已知点C(﹣5,﹣3)和点D(5,1),若抛物线与线段CD有两个不同的交点,求a的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵点到圆心的距离5,大于圆的半径3,

∴点在圆外.故选C.【点睛】判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.2、C【分析】将点(-2,-6)代入,即可计算出k的值.【详解】∵点(-2,-6)在反比例函数上,∴k=(-2)×(-6)=12,故选:C.【点睛】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键.3、D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.4、D【分析】直接利用随机事件以及概率的意义分别分析得出答案.【详解】解:A、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,不合题意;B、某种彩票中奖率是1%,则买这种彩票100张有可能会中奖,不合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选D.【点睛】本题主要考查了概率的意义以及随机事件,解决本题的关键是要正确区分各事件的意义.5、D【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.6、C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,3,x,1,1,2.已知这组数据的平均数是3,

∴x=3×2-4-4-3-1-1-2=3,

∴这一组数从小到大排列为:3,4,4,3,1,1,2,

∴这组数据的中位数是:3.

故选:C.【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键.7、C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=﹣3x1向左平移1个单位所得直线解析式为:y=﹣3(x+1)1;再向下平移1个单位为:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故选C.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.8、B【分析】首先连接OC,由CE是切线,可得,由圆周角定理,可得,继而求得的度数,则可求得的值.【详解】解:连接OC,

是切线,

即,

,、分别是所对的圆心角、圆周角,

.故选:B.【点睛】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.根据切线的性质连半径是解题的关键.9、D【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ADC=110°,即优弧的度数是220°,∴劣弧的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10、D【分析】由抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧即可判断a、c、b的符号,进而可判断A项;抛物线的对称轴为直线x=﹣,结合抛物线的对称轴公式即可判断B项;由图象可知;当x=1时,a+b+c<0,再结合B项的结论即可判断C项;由(1,0)与(﹣2,0)关于抛物线的对称轴对称,可知当x=-2时,y<0,进而可判断D项.【详解】解:A、∵抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧,∴a>0,c<0,<0,∴b>0,∴abc<0,所以本选项错误;B、∵抛物线的对称轴为直线x=﹣,∴,∴a﹣b=0,所以本选项错误;C、∵当x=1时,a+b+c<0,且a=b,∴,所以本选项错误;D、∵(1,0)与(﹣2,0)关于抛物线的对称轴对称,且当x=1时,y<0,∴当x=-2时,y<0,即4a﹣2b+c<0,∴,所以本选项正确.故选:D.【点睛】本题考查了二次函数的图象与性质,属于常考题型,熟练掌握抛物线的性质是解题关键.二、填空题(每小题3分,共24分)11、x1=0,x2=1【分析】先移项,然后利用因式分解法求解.【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解12、20m【解析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.13、a>1.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<1,解得:a>1,故答案为a>1.考点:根的判别式.14、【分析】根据反比例函数的性质:当k>0时函数图像的每一支上,y随x的增大而减少;当k<0时,函数图像的每一支上,y随x的增大而增大,因此符合条件的反比例函数满足k<0即可.【详解】因为反比例函数的图象在每一象限内,y随x的增大而增大,所以k<0故答案为:【点睛】本题考查的是反比例函数的性质,掌握反比例函数的增减性是关键.15、1【分析】将抛物线的解析式化为顶点式,即可得到该抛物线的对称轴;【详解】解:∵抛物线y=(x﹣1)(x﹣3)=x1﹣4x+3=(x﹣1)1﹣1,∴该抛物线的对称轴是直线x=1,故答案为:1.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.16、【分析】根据抛掷一枚硬币,要么正面朝上,要么反面朝上,可以求得相应的概率.【详解】无论哪一次掷硬币,都有两种可能,即正面朝上与反面朝上,则掷硬币出现正面概率为:;故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、4(1+x)2=5.1【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x,根据“由2010年的年收入4万元增加到2012年年收入5.1万元”,即可得出方程.【详解】设每年的年增长率为x,根据题意得:4(1+x)2=5.1.故答案为4(1+x)2=5.1.【点睛】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(增长为+,下降为﹣).18、【解析】分析:设勾为2k,则股为3k,弦为k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k,弦为k,∴大正方形面积S=k×k=13k2,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13k2-k2=12k2∴针尖落在阴影区域的概率为:.故答案为.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.三、解答题(共66分)19、(1)详见解析;(2)详见解析.【分析】(1)根据圆的对称性即可求出答案;(2)先证明△BCD∽△BDF,利用相似三角形的性质可知:,利用BC=AC即可求证=AC•BF;【详解】解:(1)∵,平分,∴,,∴是圆的直径∵AB∥EF,∴,∵是圆的半径,∴是的切线;(2)∵,∴,∴,∴,∴,∵,∴.【点睛】本题主要考查了圆周角定理,切线的判定与性质,相似三角形的判定与性质,掌握圆周角定理,切线的判定与性质,相似三角形的判定与性质是解题的关键.20、(1)正比例函数、反比例函数的表达式为:,;(2)B点坐标是(-2,-1)【解析】试题分析:(1)把点A、B的坐标分别代入函数y=k1x(k1≠0)与函数中求出k1和k2的值,即可得到两个函数的解析式;(2)把(1)中所得两个函数的解析式组成方程组,解方程组即可得到点B的坐标.试题解析:解:(1)把点A(2,1)分别代入y=k1x与可得:,k2=2,∴正比例函数、反比例函数的表达式分别为:,;(2)由题意得方程组:,解得:,,∴点B的坐标是(-2,-1).21、(1),顶点坐标为;(2)8;(3)①;②.【分析】(1)将点C代入表达式即可求出解析式,将表达式转换为顶点式即可写出顶点坐标;(2)根据题目分析可知,当点P位于抛物线顶点时,△ABP面积最大,根据解析式求出A、B坐标,从而得到AB长,再利用三角形面积公式计算面积即可;(3)①分三种情况:0<m≤1、1<m≤2以及m>2时,分别进行计算即可;②将h=9代入①中的表达式分别计算判断即可.【详解】解:(1)将点代入,得,解得,∴,∵,∴抛物线的顶点坐标为;(2)令,解得或,∴,,∴,当点与抛物线顶点重合时,△ABP的面积最大,此时;(3)①∵点C(0,-3)关于对称轴x=1对称的点的坐标为(2,-3),P(m,),∴当时,,当时,,当时,,综上所述,;②当h=9时,若,此时方程无解,若,解得m=4或m=-2(不合题意,舍去),∴P(4,5).【点睛】本题为二次函数综合题,需熟练掌握二次函数表达式求法及二次函数的性质,对于动点问题正确分析出所存在的所有情况是解题关键.22、(1);(2)(-1,);(3)M1(-1,-),M2(-3,),M3(1,).【解析】(1)先确定出点B坐标,再用待定系数法即可;(2)先判断出使△BOC的周长最小的点C的位置,再求解即可;(3)分OA为对角线、为边这两种情况进行讨论计算即可得出答案.【详解】(1)如图所示,过点B作BD⊥x轴于点D,∵点A的坐标为(-2,0),OB=OA,∴OB=OA=2,∵∠AOB=120°,∴∠BOD=60°,在Rt△OBD中,∠ODB=90°,∴∠OBD=30°,∴OD=1,DB=,∴点B的坐标是(1,),设所求抛物线的解析式为y=ax2+bx+c,由已知可得:,解得:∴所求抛物线解析式为;(2)存在.如图所示,∵△BOC的周长=OB+BC+CO,又∵OB=2,∴要使△BOC的周长最小,必须BC+CO最小,∵点O和点A关于对称轴对称,∴连接AB与对称轴的交点即为点C,由对称可知,OC=OA,此时△BOC的周长=OB+BC+CO=OB+BC+AC;点C为直线AB与抛物线对称轴的交点,设直线AB的解析式为y=kx+b,将点A(−2,0),B(1,)分别代入,得:,解得:,∴直线AB的解析式为y=x+,当x=−1时,y=,∴所求点C的坐标为(−1,);(3)如图所示,①当以OA为对角线时,∵OA与MN互相垂直且平分,∴点M1(−1,−),②当以OA为边时,∵OA=MN且OA∥MN,即MN=2,MN∥x轴,设N(−1,t),则M(−3,t)或(1,t)将M点坐标代入,解得,t=,∴M2(−3,),M3(1,)综上:点M的坐标为:(-1,-),或(-3,)或(1,).【点睛】本题是一道二次函数综合题,主要考查了二次函数的性质、最短路径、平行四边形等知识.综合运用所学知识,并进行分类讨论是解题的关键.23、(1)①证明见解析;②;(2)【分析】(1)①根据三角形内角和定理可得,然后根据三角形外角的性质可得,从而证出结论;②过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用AAS证出,可得,利用平行线分线段成比例定理即可证出结论;(2)根据三角形内角和定理可得,然后根据三角形外角的性质可得,过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用相似三角形的判定证出,可得,利用平行线分线段成比例定理即可证出结论;【详解】证明:(1)①∵,∴∵,∴,∴②如图,过点作交的延长线于点,过点作于点,过点作交于点,∵,,∴,∴,∵∴,∴∵点是中点,∴∵,∴,∴∵∴,∴∵∴(2)∵,∴∵,∴,∴过点作交的延长线于点,过点作于点,过点作交于点,∵,,∴,∴,∵∴,∴∵,∴∵,∴,∴∴∵∴,∴∵∴【点睛】此题考查的是相似三角形与全等三角形的综合大题,掌握构造全等三角形、相似三角形的方法、全等三角形的判定及性质和相似三角形的判定及性质是解决此题的关键.24、(1)1401;(2)w外=x2+(130-a)x;(3)a=2;(4)见解析【分析】(1)将x=1000代入函数关系式求得y,根据等量关系“利润=销售额-成本-广告费”求得w内;

(2)根据等量关系“利润=销售额-成本-广告费”,“利润=销售额-成本-附加费”列出两个函数关系式;

(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值;

(4)根据x=3000,即可求得w内的值和w外关于a的一次函数式,即可解题.【详解】解:(1))∵销售价格y(元/件)与月销量x(件)的函数关系式为y=x+130,∴当x=1000时,y=-10+130=140,w内=x(y-20)-62300=1000×120-62300=1,

故答案为:140,1.(2)w内=x(y-20)-62300=x2+12x,w外=x2+(130)x.(3)当x==6300时,w内最大;分由题意得,解得a1=2,a2=270(不合题意,舍去).所以a=2.(4)当x=3000时,w内=337300,w外=.若w内<w外,则a<32.3;若w内=w外,则a=32.3;若w内>w外,则a>32.3.所以,当10≤a<32.3时,选择在国外销售;当a=32.3时,在国外和国内销售都一样;当32.3<a≤40时,选择在国内销售.25、(1)x1=2,x2=5;(2)x=;(3)x=-1.5或x=2【分析】(1)运用因式分解法求解;(2)运用公式法求解;(3)运用直接开平方知识求解.【详解】解:(1)x2-7x+11=1.(x-2)(x-5)=1,x-2=1或x-5=1,解得x1=2,x2=5.(2)△=(-4)2-4×3×(-1)=28,x=所以x1=;x2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论