江苏省无锡市各地2022-2023学年数学九上期末达标检测模拟试题含解析_第1页
江苏省无锡市各地2022-2023学年数学九上期末达标检测模拟试题含解析_第2页
江苏省无锡市各地2022-2023学年数学九上期末达标检测模拟试题含解析_第3页
江苏省无锡市各地2022-2023学年数学九上期末达标检测模拟试题含解析_第4页
江苏省无锡市各地2022-2023学年数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A. B. C. D.2.如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.3.下列事件中,必然事件是()A.一定是正数B.八边形的外角和等于C.明天是晴天D.中秋节晚上能看到月亮4.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B.π C. D.5.已知反比例函数的图象经过点,则的值是()A. B. C. D.6.关于反比例函数,下列说法错误的是()A.随的增大而减小 B.图象位于一、三象限C.图象过点 D.图象关于原点成中心对称7.已知点P(2a+1,a﹣1)关于原点对称的点在第一象限,则a的取值范围是()A.a<﹣或a>1 B.a<﹣ C.﹣<a<1 D.a>18.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.线段 B.三角形 C.平行四边形 D.正方形9.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=1.则a+b之值为何?()A.1 B.9 C.16 D.2110.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.311.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于()A.2m B.4m C.10m D.16m12.下列关系式中,y是x的反比例函数的是()A.y=4x B. C. D.二、填空题(每题4分,共24分)13.如图,CD是的直径,E为上一点,,A为DC延长线上一点,AE交于点B,且,则的度数为__________.

14.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.15.如图,AD与BC相交于点O,如果,那么当的值是_____时,AB∥CD.16.如图,在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则=_______.17.若,则=___________.18.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=.三、解答题(共78分)19.(8分)为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,1,1.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)20.(8分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的;(2)联结AD,AD=7,sin∠DAC=17,BC=9,求AC21.(8分)用合适的方法解方程:(1);(2).22.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=1.(1)填空:点B的坐标为(用含m的代数式表示);(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:①求抛物线的解析式(用含m的代数式表示);②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.23.(10分)已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条件下,方程的实数根是、,求代数式的值.24.(10分)如图①是图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂,灯罩,灯臂与底座构成的.可以绕点上下调节一定的角度.使用发现:当与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).25.(12分)央视举办的《主持人大赛》受到广泛的关注.某中学学生会就《主持人大赛》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作、、、.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有人;扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为.(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两个女生和两个男生,从选“不太喜欢”的人中挑选两个学生了解不太喜欢的原因,请用列举法(画树状图或列表),求所选取的这两名学生恰好是一男一女的概率.26.在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:分别对A、B、C、D四个选项进行一一验证,令y=1,转化为一元二次方程,根据根的判别式来判断方程是否有根.A、令y=1,得x2=1,△=1-4×1×1=1,则函数图形与x轴没有两个交点,故A错误;B、令y=1,得x2+4=1,△=1-4×1×1=-4<1,则函数图形与x轴没有两个交点,故B错误;C、令y=1,得3x2-2x+5=1,△=4-4×3×5=-56<1,则函数图形与x轴没有两个交点,故C错误;D、令y=1,得3x2+5x-1=1,△=25-4×3×(-1)=37>1,则函数图形与x轴有两个交点,故D正确;故选D.考点:本题考查的是抛物线与x轴的交点点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.2、C【解析】根据简单几何体的三视图即可求解.【详解】三视图的俯视图,应从上面看,故选C【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.3、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、a2一定是非负数,则a2一定是正数是随机事件;B、八边形的外角和等于360°是必然事件;C、明天是晴天是随机事件;D、中秋节晚上能看到月亮是随机事件;故选B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【解析】试题分析:根据弧长公式知:扇形的弧长为.故选D.考点:弧长公式.5、A【分析】把代入反比例函数的解析式即可求解.【详解】把代入得:k=-4故选:A【点睛】本题考查的是求反比例函数的解析式,掌握反比例函数的图象和性质是关键.6、A【分析】根据反比例函数的性质用排除法解答.【详解】A、反比例函数解析式中k=2>0,则在同一个象限内,y随x增大而减小,选项中没有提到每个象限,故错误;B、2>0,图象经过一三象限,故正确;C、把x=-1代入函数解析式,求得y=-2,故正确;D、反比例函数图象都是关于原点对称的,故正确.故选:A.【点睛】本题考查了反比例函数的性质,解题的关键是要明确反比例函数的增减性必须要强调在同一个象限内.7、B【分析】直接利用关于原点对称点的纵横坐标均互为相反数分析得出答案.【详解】点P(2a+1,a﹣1)关于原点对称的点(﹣2a﹣1,﹣a+1)在第一象限,则,解得:a<﹣.故选:B.【点睛】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确解不等式是解题关键.8、B【解析】根据长方形放置的不同角度,得到的不同影子,发挥想象能力逐个实验即可.【详解】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:B.【点睛】本题主要考查几何图形的投影,关键在于根据不同的位置,识别不同的投影图形.9、A【解析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;详解:如图,由题意知:A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选A.点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.10、B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.11、B【分析】根据题意,水面宽度AB为20则B点的横坐标为10,利用B点是函数为图象上的点即可求解y的值即DO【详解】根据题意B的横坐标为10,把x=10代入,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面与桥拱顶的高度DO等于4m.故选B.【点睛】本题考查了点的坐标及二次函数的实际应用.12、C【解析】根据反比例函数的定义判断即可.【详解】A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选C.【点睛】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.二、填空题(每题4分,共24分)13、16°【分析】连接OB,根据,可得,设∠A=x,则∠AOB=x,列方程求出x的值即可.【详解】连接OB设∠A=x,则∠AOB=x即∠A的度数为16°故答案为:16°.【点睛】本题考查了圆的角度问题,掌握等边对等角、三角形外角定理是解题的关键.14、1【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有个,第二层最多有个,第三层最多有个则n的最大值是故答案为:1.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.15、【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,据此可得结论.【详解】,当时,,.故答案为.【点睛】本题主要考查了平行线分线段成比例定理,解题时注意:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.16、.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据,得出CG与DE的倍数关系,并根据进行计算即可.【详解】延长EF和BC交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E∴∴∴直角三角形ABE中,又∵∠BED的角平分线EF与DC交于点F∴∵∴∴∴由,,可得∴设,,则∴∴解得∴故答案为:.【点睛】本题考查了矩形与角平分线的综合问题,掌握等腰直角三角形的性质和相似三角形的性质以及判定是解题的关键.17、【分析】把所求比例形式进行变形,然后整体代入求值即可.【详解】,,;故答案为.【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.18、π.【解析】图1,过点O做OE⊥AC,OF⊥BC,垂足为E.

F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3−r,BD=4−r∴3−r+4−r=5,r==1∴S1=π×12=π图2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD=,BD=5−=,由(1)得:⊙O的半径=,⊙E的半径=,∴S1+S2=π×()2+π×()2=π.图3,由S△CDB=××=×4×MD∴MD=,由勾股定理得:CM=,MB=4−=,由(1)得:⊙O的半径=,⊙E的半径=,∴⊙F的半径=,∴S1+S2+S3=π×()2+π×()2+π×()2=π三、解答题(共78分)19、(1)8,8,;(2)选择小华参赛.(3)变小【分析】(1)根据方差、平均数和中位数的定义求解;

(2)根据方差的意义求解;

(3)根据方差公式求解.【详解】(1)解:小华射击命中的平均数:=8,小华射击命中的方差:,小亮射击命中的中位数:;(2)解:∵小华=小亮,S2小华<S2小亮∴选小华参赛更好,因为两人的平均成绩相同,但小华的方差较小,说明小华的成绩更稳定,所以选择小华参赛.(3)解:小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数和众数.20、(1)线段AB的垂直平分线(或中垂线);(2)AC=53.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=17,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.21、(1);(2),.【分析】(1)把方程整理后左边进行因式分解,求方程的解即可;(2)方程整理配方后,开方即可求出解;【详解】(1),移项整理得:,提公因式得:,∴或,解得:;(2),方程移项得:,二次项系数化成1得:,配方得:,即,开方得:,解得:.【点睛】本题主要考查了解一元二次方程-配方法、因式分解法,熟练掌握一元二次方程的各种解法是解题的关键.22、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值为:3+3或3﹣3或3≤m≤3.【分析】(1)A的坐标为(m,0),AB=1,则点B坐标为(m-1,0);(3)①S△ABP=•AB•yP=3yP=8,即:yP=1,求出点P的坐标为(1+m,1),即可求解;②抛物线对称轴为x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三种情况,讨论求解.【详解】解:(1)A的坐标为(m,0),AB=1,则点B坐标为(m﹣1,0),故答案为(m﹣1,0);(3)①S△ABP=AB•yP=3yP=8,∴yP=1,把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,此时,直线AP表达式中的k值为1,设:直线AP的表达式为:y=x+b,把点A坐标代入上式得:m+b=0,即:b=﹣m,则直线AP的表达式为:y=x﹣m,则点P的坐标为(1+m,1),则抛物线的表达式为:y=a(x﹣m)(x﹣m+1),把点P坐标代入上式得:a(1+m﹣m)(1+m﹣m+1)=1,解得:a=,则抛物线表达式为:y=(x﹣m)(x﹣m+1),②抛物线的对称轴为:x=m﹣3,当x=m﹣3≥1(即:m≥3)时,x=0时,抛物线上的点到x轴距离为最大值,即:(0﹣m)(0﹣m+1)=,解得:m=3或3±3,∵m≥3,故:m=3+3;当0≤x=m﹣3≤1(即:3≤m≤3)时,在顶点处,抛物线上的点到x轴距离为最大值,即:﹣(m﹣3﹣m)(m﹣3﹣m+1)=,符合条件,故:3≤m≤3;当x=m﹣3≤0(即:m≤3)时,x=1时,抛物线上的点到x轴距离为最大值,即:(1﹣m)(1﹣m+1)=,解得:m=3或3±3,∵m≤3,故:m=3﹣3;综上所述,m的值为:3+3或3﹣3或3≤m≤3.【点睛】本题考查的是二次函数知识的综合运用,涉及到图象旋转、一次函数基本知识等相关内容,其中(3)中,讨论抛物线对称轴所处的位置与0,1的关系是本题的难点.23、(1)1;(2)1.【分析】(1)根据一元二次方程有两不相等的实数根,则根的判别式=b2-4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;

(2)把m=1代入x2-2x+m=0,根据根与系数的关系可得出x1+x2,x1x2的值,由=(x1+x2)2-3x1x2,最后将x1+x2,x1x2的值代入即可得出结果.【详解】解:(1)由题意,得>0,即>0,解得m<2,∴m的最大整数值为1;(2)把m=1代入x2-2x+m=0得,x2-2x+1=0,根据根与系数的关系得,x1+x2=2,x1x2=1,∴=(x1+x2)2-3x1x2=(2)2-3×1=1.【点睛】此题考查了一元二次方程根的情况与判别式的关系以及根与系数的关系.根的情况与判别式的关系如下:(1)>0⇔方程有两个不相等的实数根;(2)=0⇔方程有两个相等的实数根;(3)<0⇔方程没有实数根.根与系数的关系如下:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=-,x1x2=.24、此时台灯光线是最佳【解析】如图,作于,于,于.解直角三角形求出即可判断.【详解】解:如图,作于,于,于.∵,∴四边形是矩形,∴,在中,∵,∴,∴∵,∴,在中,,∴,∴此时台灯光线为最佳.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.25、(1)50;144;(2)详见解析;(3).【分析】(1)根据A组的人数及占比即可求解被调查对象的总人数,再求出D,B的占比即可求出被调查者“比较喜欢”等级所对应圆心角的度数;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论