版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点20:相似三角形1.(2023凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为()
A.9cm B.12cm C.15cm D.18cm2.(2023眉山)如图,四边形为正方形,将绕点逆时针旋转至,点,,在同一直线上,与交于点,延长与的延长线交于点,,.以下结论:①;②;③;④.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个3.(2023雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=()A. B. C. D.4.(2023宜宾)如图,和都是等腰直角三角形,,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①;②;③若,则;④在内存在唯一一点P,使得的值最小,若点D在AP的延长线上,且AP的长为2,则.其中含所有正确结论的选项是()①②④ B.①②③ C.①③④ D.①②③④5.(2023宜宾)如图,中,点E、F分别在边AB、AC上,.若,,,则______.6.(2023凉山州)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为_______.7.(2023成都)如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.8.(2023成都)如图,在菱形中,过点作交对角线于点,连接,点是线段上一动点,作关于直线的对称点,点是上一动点,连接,.若,,则的最大值为_________.9.(2023达州)如图,在边长为2的正方形中,点E,F分别为,边上的动点(不与端点重合),连接,,分别交对角线于点P,Q.点E,F在运动过程中,始终保持,连接,,.以下结论:①;②;③;④为等腰直角三角形;⑤若过点B作,垂足为H,连接,则的最小值为.其中所有正确结论的序号是____.10.(2023绵阳)如图,四边形ABCD中,∠ADC=90°,AC⊥BC,∠ABC=45°,AC与BD交于点E,若AB=,CD=2,则△ABE的面积为_________.11.(2023内江)(12分)如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN⊥MC,点E为CD的中点,连接BE交MC于点F.(1)当F为BE的中点时,求证:AM=CE;(2)若=2,求的值;(3)若MN∥BE,求的值.12.(2023成都)如图,在矩形中,,点是边上一动点(点不与,重合),连接,以为边在直线的右侧作矩形,使得矩形矩形,交直线于点.
(1)【尝试初探】在点的运动过程中,与始终保持相似关系,请说明理由.(2)【深入探究】若,随着点位置的变化,点的位置随之发生变化,当是线段中点时,求的值.(3)【拓展延伸】连接,,当是以为腰的等腰三角形时,求的值(用含的代数式表示).13.(2023达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形和等腰直角三角形,按如图1的方式摆放,,随后保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当时,则_____;(2)【初步探究】如图3,当点E,F重合时,请直接写出,,之间的数量关系:_________;(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在与中,,若,(m为常数).保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接,如图6.试探究,,之间的数量关系,并说明理由.14.(2023乐山)华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.2.如图,在正方形ABCD中,.求证:.证明:设CE与DF交于点O,∵四边形ABCD是正方形,∴,.∴.∵,∴.∴.∴.∴.∴.某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究(1)【问题探究】如图,在正方形ABCD中,点E、F、G、H分别在线段AB、BC、CD、DA上,且.试猜想的值,并证明你的猜想.(2)【知识迁移】如图,在矩形ABCD中,,,点E、F、G、H分别在线段AB、BC、CD、DA上,且.则______.(3)【拓展应用】如图,在四边形ABCD中,,,,点E、F分别在线段AB、AD上,且.求的值.考点20:相似三角形1.(2023凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为()
A.9cm B.12cm C.15cm D.18cm答案:C解析:分析:根据平行得到,根据相似的性质得出,再结合,DE=6cm,利用相似比即可得出结论.【详解】解:在△ABC中,点D、E分别在边AB、AC上,若DEBC,,,,,,,,,故选:C.【点睛】本题考查利用相似求线段长,涉及到平行线的性质、两个三角形相似的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解决问题的关键.2.(2023眉山)如图,四边形为正方形,将绕点逆时针旋转至,点,,在同一直线上,与交于点,延长与的延长线交于点,,.以下结论:①;②;③;④.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个答案:D解析:分析:利用旋转的性质,正方形的性质,可判断①正确;利用三角形相似的判定及性质可知②正确;证明,得到,即,利用是等腰直角三角形,求出,再证明即可求出可知③正确;过点E作交FD于点M,求出,再证明,即可知④正确.【详解】解:∵旋转得到,∴,∵为正方形,,,在同一直线上,∴,∴,故①正确;∵旋转得到,∴,,∴,∴,∵,∴,∴,∴,故②正确;设正方形边长a,∵,,∴,∵,∴,∴,即,∵是等腰直角三角形,∴,∵,,∴,∴,即,解得:,∵,∴,故③正确;过点E作交FD于点M,∴,∵,∴,∵,∴,∵,,∴,∴,故④正确综上所述:正确结论有4个,故选:D【点睛】本题考查正方形性质,旋转的性质,三角形相似的判定及性质,解直角三角形,解题的关键是熟练掌握以上知识点,结合图形求解.3.(2023雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=()A. B. C. D.答案:D解析:分析:先求解再证明可得【详解】解:=,DE∥BC,故选D【点睛】本题考查的是相似三角形的判定与性质,证明是解本题的关键.4.(2023宜宾)如图,和都是等腰直角三角形,,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①;②;③若,则;④在内存在唯一一点P,使得的值最小,若点D在AP的延长线上,且AP的长为2,则.其中含所有正确结论的选项是()①②④ B.①②③ C.①③④ D.①②③④答案:B解析:分析:证明,即可判断①,根据①可得,由可得四点共圆,进而可得,即可判断②,过点作于,交的延长线于点,证明,根据相似三角形的性质可得,即可判断③,将绕点逆时针旋转60度,得到,则是等边三角形,根据当共线时,取得最小值,可得四边形是正方形,勾股定理求得,根据即可判断④.【详解】解:和都是等腰直角三角形,,故①正确;四点共圆,故②正确;如图,过点作于,交的延长线于点,
,,,设,则,,则AH∥CE,则;故③正确如图,将绕点逆时针旋转60度,得到,则是等边三角形,
,当共线时,取得最小值,此时,此时,,,,,,,平分,,四点共圆,,又,,,则四边形是菱形,又,四边形是正方形,,则,,,,,,则,,,,故④不正确,故选B.【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.5.(2023宜宾)如图,中,点E、F分别在边AB、AC上,.若,,,则______.答案:解析:分析:易证△AEF∽△ABC,得即即可求解.【详解】解:∵∠1=∠2,∠A=∠A,∴△AEF∽△ABC,∴,即∵,,,∴,∴EF=,故答案为:.【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质定理是解题的关键.6.(2023凉山州)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为_______.
答案:解析:分析:如图(见解析),先根据平行线的判定与性质可得,从而可得,再根据相似三角形的判定证出,根据相似三角形的性质可得的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:,,,,同理可得:,,,在和中,,,,,,解得,经检验,是所列分式方程的解,则,故答案为:.
【点睛】本题考查了相似三角形的判定与性质、正切等知识点,正确找出两个相似三角形是解题关键.7.(2023成都)如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.答案:解析:分析:根据位似图形的性质,得到,根据得到相似比为,再结合三角形的周长比等于相似比即可得到结论.【详解】解:和是以点为位似中心的位似图形,,,,,根据与的周长比等于相似比可得,故答案为:.【点睛】本题考查相似图形的性质,掌握位似图形与相似图形的关系,熟记相似图形的性质是解决问题的关键.8.(2023成都)如图,在菱形中,过点作交对角线于点,连接,点是线段上一动点,作关于直线的对称点,点是上一动点,连接,.若,,则的最大值为_________.答案:##解析:分析:延长DE,交AB于点H,确定点B关于直线DE的对称点F,由点B,D关于直线AC对称可知QD=QB,求最大,即求最大,点Q,B,共线时,,根据“三角形两边之差小于第三边”可得最大,当点与点F重合时,得到最大值.连接BD,即可求出CO,EO,再说明,可得DO,根据勾股定理求出DE,然后证明,可求BH,即可得出答案.【详解】延长DE,交AB于点H,∵,ED⊥CD,∴DH⊥AB.取FH=BH,∴点P的对称点在EF上.由点B,D关于直线AC对称,∴QD=QB.要求最大,即求最大,点Q,B,共线时,,根据“三角形两边之差小于第三边”可得最大,当点与点F重合时,得到最大值BF.连接BD,与AC交于点O.∵AE=14,CE=18,∴AC=32,∴CO=16,EO=2.∵∠EDO+∠DEO=90°,∠EDO+∠CDO=90°,∴∠DEO=∠CDO.∵∠EOD=∠DOC,∴,∴,即,解得,∴.在Rt△DEO中,.∵∠EDO=∠BDH,∠DOE=∠DHB,∴,∴,即,解得,∴.故答案为:.【点睛】这是一道根据轴对称求线段差最大的问题,考查了菱形的性质,勾股定理,轴对称的性质,相似三角形的性质和判定等,确定最大值是解题的关键.9.(2023达州)如图,在边长为2的正方形中,点E,F分别为,边上的动点(不与端点重合),连接,,分别交对角线于点P,Q.点E,F在运动过程中,始终保持,连接,,.以下结论:①;②;③;④为等腰直角三角形;⑤若过点B作,垂足为H,连接,则的最小值为.其中所有正确结论的序号是____.
答案:①②④⑤解析:分析:连接BD,延长DA到M,使AM=CF,连接BM,根据正方形的性质及线段垂直平分线的性质定理即可判断①正确;通过证明,,可证明②正确;作,交AC的延长线于K,在BK上截取BN=BP,连接CN,通过证明,可判断③错误;通过证明,,利用相似三角形的性质即可证明④正确;当点B、H、D三点共线时,DH的值最小,分别求解即可判断⑤正确.【详解】
如图1,连接BD,延长DA到M,使AM=CF,连接BM,四边形ABCD是正方形,垂直平分BD,,,,,故①正确;,,,,,即,,,,,,,故②正确;
如图2,作,交AC的延长线于K,在BK上截取BN=BP,连接CN,,,,,,即,,故③错误;如图1,四边形ABCD正方形,,,,,,,,,,为等腰直角三角形,故④正确;如图1,当点B、H、D三点共线时,DH的值最小,,,,,,故⑤正确;故答案:①②④⑤.【点睛】本题考查了正方形的性质,线段垂直平分线的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握知识点并准确作出辅助线是解题的关键.10.(2023绵阳)如图,四边形ABCD中,∠ADC=90°,AC⊥BC,∠ABC=45°,AC与BD交于点E,若AB=,CD=2,则△ABE的面积为_________.
答案:解析:分析:过点D作DF⊥AC于点F,解Rt△ABC求出AC、BC,再由勾股定理求得AD,根据三角形的面积公式求得DF,由勾股定理求得AF,再证明△DEF∽△BEC,求得EF,进而求得AE,最后由三角形面积公式求得结果.【详解】解:过点D作DF⊥AC于点F,
∵AC⊥BC,∠ABC=45°,∴△ABC等腰直角三角形,∴,∵∠ADC=90°,CD=2,∴,∵,∴,∴,∴,∵DF∥BC,∴△DEF∽△BEC,∴,即,解得:,∴,∴.故答案为:【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,相似三角形的性质与判定,三角形的面积公式,关键是作辅助线构造相似三角形与直角三角形.11.(2023内江)(12分)如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN⊥MC,点E为CD的中点,连接BE交MC于点F.(1)当F为BE的中点时,求证:AM=CE;(2)若=2,求的值;(3)若MN∥BE,求的值.分析:(1)根据矩形的性质,利用AAS证明△BMF≌△ECF,得BM=CE,再利用点E为CD的中点,即可证明结论;(2)利用△BMF∽△ECF,得,从而求出BM的长,再利用△ANM∽△BMC,得,求出AN的长,可得答案;(3)首先利用同角的余角相等得∠CBF=∠CMB,则tan∠CBF=tan∠CMB,得,可得BM的长,由(2)同理可得答案.【解答】(1)证明:∵F为BE的中点,∴BF=EF,∵四边形ABCD是矩形,∴AB∥CD,AB=CD∴∠BMF=∠ECF,∵∠BFM=∠EFC,∴△BMF≌△ECF(AAS),∴BM=CE,∵点E为CD的中点,∴CE=DE,∴BM=CE=DE,∵AB=CD,∴AM=CE;(2)解:∵∠BMF=∠ECF,∠BFM=∠EFC,∴△BMF∽△ECF,∴,∵CE=3,∴BM=,∴AM=,∵CM⊥MN,∴∠CMN=90°,∴∠AMN+∠BMC=90°,∵∠AMN+∠ANM=90°,∴∠ANM=∠BMC,∵∠A=∠MBC,∴△ANM∽△BMC,∴,∴,∴,∴DN=AD﹣AN=4﹣=,∴;(3)解:∵MN∥BE,∴∠BFC=∠CMN,∴∠FBC+∠BCM=90°,∵∠BCM+∠BMC=90°,∴∠CBF=∠CMB,∴tan∠CBF=tan∠CMB,∴,∴,∴,∴=,由(2)同理得,,∴,解得AN=,∴DN=AD﹣AN=4﹣=,∴=.【点评】本题是相似形综合题,主要考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,求出BM的长是解决(2)和(3)的关键.12.(2023成都)如图,在矩形中,,点是边上一动点(点不与,重合),连接,以为边在直线的右侧作矩形,使得矩形矩形,交直线于点.
(1)【尝试初探】在点的运动过程中,与始终保持相似关系,请说明理由.(2)【深入探究】若,随着点位置的变化,点的位置随之发生变化,当是线段中点时,求的值.(3)【拓展延伸】连接,,当是以为腰的等腰三角形时,求的值(用含的代数式表示).答案:(1)见解析(2)或(3)或解析:分析:(1)根据题意可得∠A=∠D=∠BEG=90°,可得∠DEH=∠ABE,即可求证;(2)根据题意可得AB=2DH,AD=2AB,AD=4DH,设DH=x,AE=a,则AB=2x,AD=4x,可得DE=4x-a,再根据△ABE∽△DEH,可得或,即可求解;(3)根据题意可得EG=nBE,然后分两种情况:当FH=BH时,当FH=BF=nBE时,即可求解.【小问1详解】解:根据题意得:∠A=∠D=∠BEG=90°,∴∠AEB+∠DEH=90°,∠AEB+∠ABE=90°,∴∠DEH=∠ABE,∴△ABE∽△DEH;【小问2详解】解:根据题意得:AB=2DH,AD=2AB,∴AD=4DH,设DH=x,AE=a,则AB=2x,AD=4x,∴DE=4x-a,∵△ABE∽△DEH,∴,∴,解得:或,∴或,∴或;【小问3详解】解:∵矩形矩形,,∴EG=nBE,如图,当FH=BH时,
∵∠BEH=∠FGH=90°,BE=FG,∴Rt△BEH≌Rt△FGH,∴EH=GH=,∴,∵△ABE∽△DEH,∴,即,∴,∴;如图,当FH=BF=nBE时,
,∴,∵△ABE∽△DEH,∴,即,∴,∴;综上所述,的值为或.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识,熟练掌握相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识是解题的关键.13.(2023达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形和等腰直角三角形,按如图1的方式摆放,,随后保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当时,则_____;(2)【初步探究】如图3,当点E,F重合时,请直接写出,,之间的数量关系:_________;(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在与中,,若,(m为常数).保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接,如图6.试探究,,之间的数量关系,并说明理由.答案:(1)(2)(3)仍然成立,理由见解析(4)解析:分析:(1)根据等腰直角三角形的性质,可得,根据题意可得,根据等原三角形的性质可得平分,即可得,根据旋转的性质可知;(2)证明,可得,根据等腰直角三角形可得,由,即可即可得出;(3)同(2)可得,过点,作,交于点,证明,,可得,即可得出;(4)过点作,交于点,证明,可得,,在中,勾股定理可得,即可得出.【小问1详解】等腰直角三角形和等腰直角三角形,,故答案为:
【小问2详解】在与中,又重合,故答案为:
【小问3详解】同(2)可得,过点,作,交于点,
则,,在与中,,,,是等腰直角三角形,,,,,在与中,,,,,即,【小问4详解】过点作,交于点,
,,,,,,,,,,,,,中,,,即.【点睛】本题考查了等腰直角三角形的性质,旋转的性质,全等三角形的性质与判定,相似三角形的性质与判定,掌握全等三角形的性质与判定,相似三角形的性质与判定是解题的关键.14.(2023乐山)华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.2.如图,在正方形ABCD中,.求证:.证明:设CE与DF交于点O,∵四边形ABCD是正方形,∴,.∴.∵,∴.∴.∴.∴.∴.某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究(1)【问题探究】如图,在正方形ABCD中,点E、F、G、H分别在线段AB、BC、CD、DA上,且.试猜想的值,并证明你的猜想.(2)【知识迁移】如图,在矩形ABCD中,,,点E、F、G、H分别在线段AB、BC、CD、DA上,且.则______.(3)【拓展应用】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力项目劳务分包合同模板
- 物业服务合同附件探究
- 长期采购合同的劣势
- 采购水泥合同书范本
- 2024年围墙节能改造项目施工合同3篇
- 房屋买卖合同无效的原因及解决策略
- 2024年移动互联网应用推广合作合同
- 2024年生态修复土石方工程合同
- 2024-2030年计算机系统集成公司技术改造及扩产项目可行性研究报告
- 2024-2030年聚迷多元醇公司技术改造及扩产项目可行性研究报告
- 2025年1月浙江省高中学业水平考试政治试卷试题(含答案解析)
- 学校网络合同范例
- 2022-2023学年上海市浦东区高二(上)期末语文试卷
- 工程建设安全专项整治三年行动实施方案
- 2025年中国帽子行业发展现状、进出口贸易及市场规模预测报告
- 工地高处坠落防范与措施方案
- 2025春夏运动户外行业趋势白皮书
- 2024年商会工作计划|商会年度工作计划总结例文
- 中医筋伤的治疗
- 国土空间生态修复规划
- 第一单元第一节《兼收并蓄滴水成河-数据和数据的采集》说课稿 2023-2024学年西交大版(2014)初中信息技术八年级上册
评论
0/150
提交评论