版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列命题:①若则;②等边三角形的三个内角都是;③线段垂直平分线上的点到线段两端的距离相等.以上命题的逆命题是真命题的有()A.个 B.个 C.个 D.个2.如图,等腰三角形的顶角为,底边,则腰长为().A. B. C. D.3.某青少年篮球队有名队员,队员的年龄情况统计如下表,则这名队员年龄的众数和中位数分别是()年龄(岁)人数A.15岁和14岁 B.15岁和15岁 C.15岁和14.5岁 D.14岁和15岁4.一个多边形的外角和等于它的内角和的倍,那么这个多边形从一个顶点引对角线的条数是()条A.3 B.4 C.5 D.65.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A. B. C. D..6.在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0) B.(-2,0) C.(6,0) D.(-6,0)7.若3x>﹣3y,则下列不等式中一定成立的是()A. B. C. D.8.点(2,-3)关于y轴的对称点是()A. B. C. D.9.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或810.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE的度数为A.55° B.50° C.45° D.60°11.如图,AE垂直于∠ABC的平分线交于点D,交BC于点E,CE=BC,若△ABC的面积为2,则△CDE的面积为()A. B. C. D.12.若一次函数(为常数,且)的图象经过点,,则不等式的解为()A. B. C. D.二、填空题(每题4分,共24分)13.计算:____,_____.14.计算:______________.15.数据1,2,3,4,5的方差是______.16.若(x﹣2)x=1,则x=___.17.如图,在中,,平分交BC于点,于点.若,则_______________.18.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=_____.三、解答题(共78分)19.(8分)近几年石家庄雾霾天气严重,给人们的生活带来很大影响.某学校计划在室内安装空气净化装置,需购进,两种设备.每台种设备价格比每台种设备价格多1万元,花50万元购买的种设备和花70万元购买种设备的数量相同.(1)求种、种设备每台各多少万元?(2)根据单位实际情况,需购进、两种设备共10台,总费用不高于30万元,求种设备至少要购买多少台?20.(8分)因式分解:a3﹣2a2b+ab221.(8分)某工厂计划生产A、B两种产品共50件,已知A产品成本2000元/件,售价2300元/件;B种产品成本3000元/件,售价3500元/件,设该厂每天生产A种产品x件,两种产品全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?22.(10分)在中,,,点是直线上的一点,连接,将线段绕点逆时针旋转,得到线段,连接.(1)操作发现如图1,当点在线段上时,请你直接写出与的位置关系为______;线段、、的数量关系为______;(2)猜想论证当点在直线上运动时,如图2,是点在射线上,如图3,是点在射线上,请你写出这两种情况下,线段、、的数量关系,并对图2的结论进行证明;(3)拓展延伸若,,请你直接写出的面积.23.(10分)如图,有六个正六边形,在每个正六边形里有六个顶点,要求用两个顶点连线(即正六边形的对角线)将正六方形分成若干块,相邻的两块用黑白两色分开.最后形成轴对称图形,图中已画出三个,请你继续画出三个不同的轴对称图形(至少用两条对角线)24.(10分)解分式方程:x-225.(12分)端午节是我国的传统节日,人们素有吃粽子的习俗,某商场在端午节来临之际用3000元购进、两种粽子1100个,购买种粽子与购买种粽子的费用相同,已知粽子的单价是种粽子单价的1.2倍.(1)求、两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购买、两种粽子共2600个,已知、两种粽子的进价不变,求中粽子最多能购进多少个?26.观察下列各式:,,,….(1)____________;(2)用含有(为正整数)的等式表示出来,并加以证明;(3)利用上面得到的规律,写出是哪个数的平方数.
参考答案一、选择题(每题4分,共48分)1、B【分析】先写出各命题的逆命题,然后根据绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理逐一判断即可.【详解】解:①“若则”的逆命题为“若,则”,当,则,故①的逆命题为假命题;②“等边三角形的三个内角都是”的逆命题为“三个内角都是60°的三角形是等边三角形”,该命题为真命题,故②的逆命题为真命题;③“线段垂直平分线上的点到线段两端的距离相等”的逆命题为“到线段两端点距离相等的点在这条线段的垂直平分线上”,该命题为真命题,故②的逆命题为真命题;综上:有2个符合题意故选B.【点睛】此题考查的是写一个命题的逆命题、绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理,掌握绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理是解决此题的关键.2、C【解析】过作,∵,.∴,.在中,,,∴,,,∴,∴.故选C.3、C【分析】根据众数和中位数的定义判断即可.【详解】解:该组数据中数量最多的是15,所以众数为15;将该组数据从小到大排列:12,12,12,13,14,14,15,15,15,15,15,16其中位数为.故选:C.【点睛】本题主要考查数据统计中众数与中位数的定义,理解掌握定义是解答关键.4、A【分析】设这个多边形有n条边,由题意得方程(n-2)×180=360×2,解方程可得到n的值,然后根据n边形从一个顶点出发可引出(n-3)条对角线可得答案.【详解】设这个多边形有n条边,由题意得:(n-2)×180=360×2,解得;n=6,从这个多边形的一个顶点出发的对角线的条数是6-3=3,故答案为:A.【点睛】此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.5、D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.对各选项图形分析判断后可知,选项D是中心对称图形.故选D.6、B【分析】先求出平移后的解析式,继而令y=0,可得关于x的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知向上平移6个单位后得函数解析式应为,此时与轴相交,则,∴,即,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.7、A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.8、C【解析】让两点的横坐标互为相反数,纵坐标不变可得所求点的坐标.【详解】解:∵所求点与点A(2,–3)关于y轴对称,∴所求点的横坐标为–2,纵坐标为–3,∴点A(2,–3)关于y轴的对称点是(–2,–3).故选C.【点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同.9、D【解析】试题分析:当底为2时,腰为3,周长=2+3+3=8;当底为3时,腰为2,周长=3+2+2=7.考点:等腰三角形的性质.10、A【分析】根据折叠的性质可知∠ABC=∠A’BC,∠DBE=∠DBE’,然后根据平角等于180°代入计算即可得出答案.【详解】解:由折叠的性质可知∠ABC=∠A’BC=35°,∠DBE=∠DBE’,∴∠EBE’=180°-∠ABC-∠A’BC=180°-35°-35°=110°,∴∠DBE=∠DBE’=∠EBE’=×110°=55°.故选A.【点睛】本题考查了折叠的性质和角的计算,熟知折叠后重合的角相等是解决此题的关键.11、A【解析】先证明△ADB≌△EBD,从而可得到AD=DE,然后先求得△AEC的面积,接下来,可得到△CDE的面积.【详解】解:如图∵BD平分∠ABC,
∴∠ABD=∠EBD.
∵AE⊥BD,
∴∠ADB=∠EDB.
在△ADB和△EDB中,∠ABD=∠EBD,BD=BD,∠ADB=∠EDB,
∴△ADB≌△EBD,
∴AD=ED.∵CE=BC,△ABC的面积为2,
∴△AEC的面积为.
又∵AD=ED,
∴△CDE的面积=△AEC的面积=故选A.【点睛】本题主要考查的是全等三角形的判定,掌握等高的两个三角形的面积比等于底边长度之比是解题的关键.12、D【分析】可直接画出图像,利用数形结合直接读出不等式的解【详解】如下图图象,易得时,故选D【点睛】本题考查一次函数与不等式的关系,本题关键在于利用画出图像,利用数形结合进行解题二、填空题(每题4分,共24分)13、【分析】根据零指数幂、负整数指数幂的意义可计算,根据积的乘方、以及单项式的除法可计算.【详解】1×=,.故答案为:,【点睛】本题考查了零指数幂、负整数指数幂、积的乘方、以及单项式的除法,熟练掌握运算法则是解答本题的关键.14、-1【解析】根据实数的性质即可化简求解.【详解】1-3=-1故答案为:-1.【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.15、1【分析】根据方差的公式计算.方差.【详解】解:数据1,1,3,4,5的平均数为,故其方差.故答案为1.【点睛】本题考查方差的计算.一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16、0或1.【解析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=1时,(1﹣2)1=1,则x=0或1.故答案为:0或1.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.17、56°【分析】根据三角形内角和定理证明∠DBE=∠DAC,再根据角平分线的定义即可解决问题.【详解】∵∠C=∠E=90°,∠ADC=∠BDE,∴∠DBE=∠DAC=28°.∵AD平分∠CAB,∴∠CAB=2∠CAD=2×28°=56°.故答案为:56°.【点睛】本题考查了三角形内角和定理,角平分线的定义等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.18、1【分析】根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.【详解】解:∵∠DBC=60°,∠C=90°,
∴∠BDC=90°-60°=30°,
∴BD=2BC=2×4=1,
∵∠C=90°,∠A=15°,
∴∠ABC=90°-15°=75°,
∴∠ABD=∠ABC-∠DBC=75°-60°=15°,
∴∠ABD=∠A,
∴AD=BD=1.
故答案为:1.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.三、解答题(共78分)19、(1)中设备每台万元,种设备每台万元;(2)5台【分析】(1)设种设备每台万元,则种设备每台万元,根据数量总价单价结合花50万元购买的种设备和花70万元购买种设备的数量相同,即可得出关于的分式方程,解之经检验后即可得出结论;(2)设购进种设备台,则购进种设备台,根据总价单价数量结合总费用不高于30元,即可得出关于的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设中设备每台万元,种设备每台万元,根据题意得:,解得,答:中设备每台万元,种设备每台万元.(2)设购进台设备,则购进台设备,根据题意得:,,,答:至少购买5台设备.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20、【分析】先提取公因式,再利用完全平方公式继续分解即可.【详解】a3﹣2a2b+ab2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21、(1)y=﹣200x+25000;(2)该厂生产的两种产品全部售出后最多能获利23000元.【分析】(1)根据题意,可以写出y与x的函数关系式;(2)根据该厂每天最多投入成本140000元,可以列出相应的不等式,求出x的取值范围,再根据(1)中的函数关系式,即可求得该厂生产的两种产品全部售出后最多能获利多少元.【详解】(1)由题意可得:y=(2300﹣2000)x+(3500﹣3000)(50﹣x)=﹣200x+25000,即y与x的函数表达式为y=﹣200x+25000;(2)∵该厂每天最多投入成本140000元,∴2000x+3000(50﹣x)≤140000,解得:x≥1.∵y=﹣200x+25000,∴当x=1时,y取得最大值,此时y=23000,答:该厂生产的两种产品全部售出后最多能获利23000元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22、(1),;(1),证明见解析;(3)71或1.【分析】(1)由已知条件可知,根据全等三角形的判定方法可证得,再利用全等三角形的性质对应边相等对应角相等,进而求得,.(1)方法同(1),根据全等三角形的判定方法可证得,进而求得结论.(3)在(1)、(1)的基础上,首先对第三问进行分类讨论并画出相应图形,然后求出,长,再将相应数据代入三角形的面积公式,进而求解.【详解】(1)结论:,证明:∵线段是由逆时针旋转得到的∴,∵∴∴∴∴在和中,∴∴,∵∴∵∴∵在四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售部门年度工作总结
- 科技公司专利代理协议(3篇)
- 数学主题演讲5分钟(34篇)
- 技术工程师岗位职责(33篇)
- 工程技术员个人年度工作总结范文
- 2024年铝锻压材项目资金需求报告代可行性研究报告
- 茶文化与茶艺鉴赏 教案 项目三 明茶礼-茶艺礼仪
- 智慧视觉AR交互装置技术要求征求意见稿
- 上海市市辖区(2024年-2025年小学五年级语文)统编版质量测试(上学期)试卷及答案
- 深圳2020-2024年中考英语真题专题06 阅读匹配(原卷版)
- GB/T 41365-2022中药材种子(种苗)白术
- GB/T 18371-2001连续玻璃纤维纱
- GB/T 12527-2008额定电压1 kV及以下架空绝缘电缆
- 一级建造师考试题库及答案(全国通用)
- 竣工工程销项工作计划表
- 公司社会责任管理制度
- 高速公路施工全流程标准化手册
- 2022届北京市东城区高三语文一模语文试卷讲评课件
- 通力电梯技能培训教材系列:《KCE控制系统课程》
- 模板-侦查阶段第二次会见笔录
- 2023年惠州仲恺城市发展集团有限公司招聘笔试题库及答案解析
评论
0/150
提交评论