




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.以上结论正确的有()个.A.1 B.2 C.3 D.42.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是()A.1.2×10﹣5 B.1.2×10﹣6 C.0.12×10﹣5 D.0.12×10﹣63.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是(
)A.51 B.49 C.76 D.无法确定4.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(-2,-3) B.(2,-3) C.(-3,2) D.(2,3)5.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A., B.,C., D.,6.如图,在中,,是的角平分线,点是上的一点,则下列结论错误的是()A. B. C. D.7.2011年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间较少了0.0000016秒,将0.0000016用科学记数法表示为()A. B. C. D.8.下列图形中,是轴对称图形的是()A. B. C. D.9.下面是四位同学所作的关于直线对称的图形,其中正确的是()A. B. C. D.10.如图,在中,,,,边的垂直平分线交于点,交于点,那么的为()A.6 B.4 C.3 D.211.如图,轮船从处以每小时海里的速度沿南偏东方向匀速航行,在处观测灯塔位于南偏东方向上.轮船航行半小时到达处,在处观测灯塔位于北偏东方向上,则处与灯塔的距离是()A.海里 B.海里 C.海里 D.海里12.用图象法解方程组时,下图中正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是__________.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=_____.15.在Rt△ABC中,∠C=90°,AB=13,BC=12,则AC=___________.16.如图,中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,如果AC=6cm,BC=8cm,那么的周长为_________cm.17.=________.18.如图:等腰三角形的底边的长是,面积是,腰的垂直平分线交于点,若是边的中点,为线段上的动点,则的最小周长为________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一动点,AP=AQ,∠PAQ=90°,连接CQ.(1)求证:CQ⊥BC.(2)△ACQ能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由.(3)当点P在BC上什么位置时,△ACQ是等腰三角形?请说明理由.20.(8分)列二元一次方程组解决问题:某校八年级师生共人准备参加社会实践活动,现已预备了两种型号的客车共辆,每辆种型号客车坐师生人,每辆种型号客车坐师生人,辆客车刚好坐满,求两种型号客车各多少辆?21.(8分)如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,若直线AD与BC相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD于F,证明:AD=EF+BD.(2)如图2,若直线AD与CB的延长线相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD交CD的延长线于F,探究:AD、EF、BD之间的数量关系,并证明.22.(10分)把两个含有角的直角三角板和如图放置,点在同一直线上,点在上,连接,,的延长线交于点.猜想与有怎样的关系?并说明理由.23.(10分)如图,在平面直角坐标系中,点,,都在小正方形的顶点上,且每个小正方形的边长为1.(1)分别写出,,三点的坐标.(2)在图中作出关于轴的对称图形.(3)求出的面积.(直接写出结果)24.(10分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF,求证:CE=DF.25.(12分)阅读材料:若,求的值.解:∵,∴,,∴,,∴.根据你的观察,探究下面的问题:(1)已知,求的值;(2)已知△ABC的三边长,且满足,求c的取值范围;(3)已知,,比较的大小.26.如图,已知,依据作图痕迹回答下面的问题:(1)和的位置关系是_________________;(2)若,时,求的周长;(3)若,,求的度数.
参考答案一、选择题(每题4分,共48分)1、C【详解】解:∵BE⊥AC,CF⊥AB,∴∠AEB=∠AFC=∠CED=∠DFB=90°.在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF.∵AC=AB,∴CE=BF.在△CDE和△BDF中,,∴△CDE≌△BDF(AAS)∴DE=DF.∵BE⊥AC于E,CF⊥AB,∴点D在∠BAC的平分线上.根据已知条件无法证明AF=FB.综上可知,①②③正确,④错误,故选C.【点睛】本题考查了全等三角形的判定及性质、角平分线的判定等知识点,要求学生要灵活运用,做题时要由易到难,不重不漏.2、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000012=1.2×10﹣1.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、C【解析】试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.4、A【分析】在平面直角坐标系中,关于x轴对称的点横坐标不变,纵坐标变为相反数.【详解】解:点P(-2,3)关于x轴对称的点的坐标(-2,-3).故选A.5、B【分析】根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.6、D【分析】根据等腰三角形“三线合一”的性质及全等三角形的判定即可确定正确的结论.【详解】∵AB=AC,AE是△ABC的角平分线,∴AE垂直平分BC,∴故A正确.∵AE垂直平分BC,∴BE=CE,∠BED=∠CED.∵DE=DE,∴△BED≌△CED,故B正确;∵AE是△ABC的角平分线,∴∠BAD=∠CAD.∵AB=AC,AD=AD,∴△BAD≌△CAD,故C正确;∵点D为AE上的任一点,∴∠ABD=∠DBE不正确.故选:D.【点睛】本题考查了等腰三角形的性质及全等三角形的判定与性质,属于等腰三角形的基础题,比较简单.7、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000016=1.6×10-6.故选B.【点睛】科学计数法:绝对值大于10的数记成a×10n的形式,其中1≤|a|<10,n是正整数.8、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、是轴对称图形,故本选项符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、D【分析】根据对称的定义即可得出答案.【详解】A:对称点连接的直线与对称轴不垂直,故选项A错误;B:对称点不在对称轴上,故选项B错误;C:对称点连接的直线到对称轴的距离不相等,故选项C错误;故答案选择:D.【点睛】本题考查的是图形的对称,属于基础题型,比较简单.10、B【解析】连接BE,利用垂直平分线的性质可得AE=BE,从而∠EBA=∠A=30°,然后用含30°角的直角三角形的性质求解.【详解】解:连接BE.∵边的垂直平分线交于点,交于点∴AE=BE∴∠EBA=∠A=30°又∵在中,,∴∠CBA=60°,∴∠CBE=30°∴在中,∠CBE=30°BE=2CE=4即AE=4故选:B.【点睛】本题考查垂直平分线的性质及含30°直角三角形的性质,题目比较简单,正确添加辅助线是解题关键.11、D【分析】根据题中所给信息,求出△ABC是等腰直角三角形,然后根据已知数据得出AC=BC的值即可.【详解】解:根据题意,∠BCD=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°-30°=45°,∴△ABC是等腰直角三角形,∵BC=50×0.5=25(海里),∴AC=BC=25(海里),故答案为:D.【点睛】本题考查了等腰直角三角形与方位角,根据方位角求出三角形各角的度数是解题的关键.12、C【解析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【详解】解方程组的两个方程可以转化为:y=和y=,只有C符合这两个函数的图象.故选:C.【点睛】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.二、填空题(每题4分,共24分)13、1【分析】先作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,可证∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=1,∠P′OP″=1∠AOB=1×30°=60°,继而可得△OP′P″是等边三角形,即PP′=OP′=1.【详解】作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=1,所以,∠P′OP″=1∠AOB=1×30°=60°,所以,△OP′P″是等边三角形,所以,PP′=OP′=1.故答案为:1.【点睛】本题主要考查轴对称和等边三角形的判定,解决本题的关键是要熟练掌握轴对称性质和等边三角形的判定.14、15°.【解析】先根据线段垂直平分线的性质得出DA=DB,∠AED=∠BED=90,即可得出∠A=∠ABD,∠BDE=∠ADE,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD,∠ABC的度数,即可求出∠DBC的度数.【详解】∵AB的垂直平分线交AC于D,交AB于E,∴DA=DB,∠AED=∠BED=90,∴∠A=∠ABD,∠BDE=∠ADE,∵∠ADE=40,∴∠A=∠ABD=90=50,∵AB=AC,∴∠ABC=,∴∠DBC=∠ABC-∠ABD=15.故答案为:15.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15、5【分析】利用勾股定理求解.【详解】解:在Rt△ABC中,∠C=90°,∴AC=.故答案为5.【点睛】掌握勾股定理是本题的解题关键.16、1【分析】依据△ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根据勾股定理可得AB的长,进而得出EB的长;设DE=CD=x,则BD=8-x,依据勾股定理可得,Rt△BDE中,DE2+BE2=BD2,解方程即可得到DE的长,再利用BC-CD得出BD的长,最后把BE,DE和BD相加求解即可.【详解】解:∵AD平分∠CAB,
∴∠CAD=∠EAD,
又∵∠C=90°,DE⊥AB,
∴∠C=∠AED=90°,
又∵AD=AD,
∴△ACD≌△AED(AAS),
∴AC=AE=6cm,CD=ED,
∵Rt△ABC中,AB==10(cm),
∴BE=AB-AE=10-6=4(cm),
设DE=CD=x,则BD=8-x,
∵Rt△BDE中,DE2+BE2=BD2,
∴x2+42=(8-x)2,
解得x=3,
∴DE=CD=3cm,∴BD=BC-CD=8-3=5cm,∴BE+DE+BD=3+4+5=1cm,
故答案为:1.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义以及勾股定理的运用,利用直角三角形勾股定理列方程求解是解决问题的关键.17、1.【解析】试题分析:先算括号里的,再开方..故答案是1.考点:算术平方根.18、1【分析】连接AM、AD,如图,根据等腰三角形的性质可得AD⊥BC,根据三角形的面积可求出AD的长,由线段垂直平分线的性质可得AM=BM,进而可推出BM+MD=AM+MD≥AD,于是AD的长为BM+MD的最小值,进一步即可求出结果.【详解】解:连接AM、AD,如图,∵△ABC是等腰三角形,是边的中点,∴AD⊥BC,∴,解得:AD=6,∵EF是的垂直平分线,∴AM=BM,∴BM+MD=AM+MD≥AD,∴AD的长为BM+MD的最小值,∴△的最小周长=AD+BD=6+=1.故答案为:1.【点睛】本题主要考查了等腰三角形的性质和线段垂直平分线的性质等知识,属于常考题型,熟练掌握上述知识、灵活应用对称的方法是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)点P为BC的中点或与点C重合时,△ACQ是直角三角形;(3)当点P为BC的中点或与点C重合或BP=AB时,△ACQ是等腰三角形.【分析】(1)根据同角的余角相等求出∠BAP=∠CAQ,然后利用“边角边”证明△ABP和△ACQ全等,根据全等三角形对应角相等可得∠ACQ=∠B,再根据等腰直角三角形的性质得到∠B=∠ACB=45°,然后求出∠BCQ=90°,然后根据垂直的定义证明即可;
(2)分∠APB和∠BAP是直角两种情况求出点P的位置,再根据△ABP和△ACQ全等解答;
(3)分BP=AB,AB=AP,AP=BP三种情况讨论求出点P的位置,再根据△ABP和△ACQ全等解答.【详解】解:(1)∵∠BAP+∠CAP=∠BAC=90°,∠CAQ+∠CAP=∠PAQ=90°,∴∠BAP=∠CAQ,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCQ=∠ACB+∠ACQ=45°+45°=90°,∴CQ⊥BC;(2)当点P为BC的中点或与点C重合时,△ACQ是直角三角形;(3)①当BP=AB时,△ABP是等腰三角形;②当AB=AP时,点P与点C重合;③当AP=BP时,点P为BC的中点;∵△ABP≌△ACQ,∴当点P为BC的中点或与点C重合或BP=AB时,△ACQ是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的性质,求出△ABP和△ACQ全等是解题的关键,难点在于(2)(3)要分情况讨论.20、种型号客车辆,种型号客车辆【分析】设A型号客车用了x辆,B型号客车用了y辆,根据两种客车共10辆正好乘坐466人,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】设种型号客车辆,种型号客车辆,依题意,得解得答:种型号客车辆,种型号客车辆.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21、(1)见解析;(2)AD+BD=EF,理由见解析.【分析】(1)将△ABD绕点A逆时针方向旋转90°至△ACG,得到BD=CG,延长GC交DE于点H,证明四边形ADHG为正方形,则AD=GH,证明△DEF≌△DCH,得到EF=CH,则得出结论;(2)作CN⊥AM,证明△DEF≌△CDN,得到EF=DN,证明△ADB≌△CNA.得到BD=AN.则AD+AN=DN=EF.【详解】证明:(1)∵AB=AC,∠BAC=90°,∴△ABC为等腰直角三角形,如图1,将△ABD绕点A逆时针方向旋转90°至△ACG,∴BD=CG,延长GC交DE于点H,∵AD⊥BE,∠DAG=∠AGC=90°,AD=AG,∴四边形ADHG为正方形,∴∠DHC=90°,∴AD=GH,∵DE=DC,EF⊥CD,∠EDF=∠CDH,∴△DEF≌△DCH(AAS),∴EF=CH,∴AD=GH=GC+CH=EF+BD;(2)AD+BD=EF,理由如下:作CN⊥AM,∵AD⊥BE,∴∠EDF+∠ADC=90°,∵∠DCN+∠ADC=90°,∴∠EDF=∠DCN,∵∠F=∠DNC=90°,DE=DC,∴△DEF≌△CDN(AAS),∴EF=DN,∵∠BAC=90°,∴∠DAB+∠NAC=90°,又∵∠DAB+∠DBA=90°,∴∠NAC=∠DBA,∵AB=AC,∴△ADB≌△CNA(AAS).∴BD=AN.∴AD+AN=DN=EF,∴AD+BD=EF.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,旋转的性质,正确作出辅助线是解题的关键.22、AD=BE,AD⊥BE【分析】根据△ABC和△CDE都是等腰直角三角形,可证明△ACD≌△BCE,进而得到AD=BE,∠CAD=∠CBE,再根据对顶角相等,即可得到∠AFB=∠ACB=90°.【详解】解:AD=BE,AD⊥BE,理由如下:∵△ABC和△CDE都是等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∴△ACD≌△BCE(SAS)∴AD=BE,∠CAD=∠CBE,∵∠ADC=∠BDF∴∠AFB=∠ACB=90°,∴AD⊥BE∴AD=BE,AD⊥BE.【点睛】本题考查了全等三角形的判定及性质,解题的关键是充分利用已知条件,熟练掌握全等三角形的判定定理.23、(1)A(1,4),B(-1,0),C(3,2);(2)作图见解析;(3)2.【分析】(1)根据点在坐标系中的位置即可写出坐标;(2)作出、、关于轴对称点、、即可;(3)理由分割法求的面积即可;【详解】(1)由图象可知A(1,4),B(-1,0),C(3,2);(2)如图△A'B'C'即为所求;
(3)S△ABC=12-×4×2-×2×2-×2×4=2.【点睛】本题考查轴对称变换,解题时根据是理解题意,熟练掌握基本知识,属于中考常考题型.24、见解析【分析】先根据AAS证明△AOC≌△BOD,得到AC=BD,再根据SAS证明△AEC≌△BFD,可证明CE=DF.【详解】证明:∵AC∥DB∴∠A=∠B在△AOC和△BOD中∵∴△AOC≌△BOD(AAS)∴AC=BD在△AEC和△BFD中∵∴△AEC≌△BFD(SAS)∴CE=DF【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.25、(1)xy的值是9;(2)1<c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店产权归属协议书
- 茶地种植合同协议书
- 配合申报工伤协议书
- 人工费调整补充协议书
- 办公室家具供货协议书
- 邻居旧房拆建协议书
- 集体商铺转让协议书
- 进京车辆租赁协议书
- 菜鸟驿站合伙协议书
- 餐饮海鲜合作协议书
- 八下历史期中考试试卷分析
- GRR表格MSA第四版完整版
- 京沪高速公路施工组织设计
- 陕西全过程工程咨询服务合同示范文本
- 公路水运工程施工企业(主要负责人和安全生产管理人员)考核大纲及模拟题库
- 1KV送配电调试报告
- GB/T 5801-2020滚动轴承机制套圈滚针轴承外形尺寸、产品几何技术规范(GPS)和公差值
- FZ/T 93029-2016塑料粗纱筒管
- 2022年12月山东省普通高中学业水平合格性考试语文仿真模拟试卷C(答题卡)
- 塑胶原料来料检验指导书
- 人教版音乐三年级下册知识总结
评论
0/150
提交评论