版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.42.用科学计数法表示为()A. B. C. D.3.如图,ΔABC中,∠A=30°,∠C=90°,AB的垂直平分线DE交AC于D点,交AB于E点,则下列结论错误的是()A.AD=BC B.AD=DB C.DE=DC D.BC=AE4.若分式方程有增根,则的值是()A. B. C. D.5.在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.46.实数在数轴上对应点如图所示,则化简的结果是()A. B. C. D.7.下列各式中,不论字母取何值时分式都有意义的是()A. B. C. D.8.已知,,且,则的值为()A.2或12 B.2或 C.或12 D.或9.等腰三角形的一个角比另一个角的倍少度,则等腰三角形顶角的度数是()A. B.或 C.或 D.或或10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A. B.C. D.11.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个12.如图所示.在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58° B.32° C.36° D.34°二、填空题(每题4分,共24分)13.在平面直角坐标系中,直线l过点M(3,0),且平行于y轴,点P的坐标是(﹣a,0),其中0<a<3,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,则PP2的长为_____.14.如果一个正数的两个平方根分别为3m+4和2﹣m,则这个数是__.15.一个容器由上下竖直放置的两个圆柱体A,B连接而成,向该容器内匀速注水,容器内水面的高度h(厘米)与注水时间t(分钟)的函数关系如图所示,若上面A圆柱体的底面积是10厘米2,下面B圆柱体的底面积是50厘米2,则每分钟向容器内注水________厘米1.16.如图,△ABC的三个顶点均在5×4的正方形网格的格点上,点M也在格点上(不与B重合),则使△ACM与△ABC全等的点M共有__________个.17.如图,一架长25m的云梯,斜靠在墙上,云梯底端在点A处离墙7米,如果云梯的底部在水平方向左滑动8米到点B处,那么云梯的顶端向下滑了_____m.18.己知a2-3a+1=0,则数式(a+1)(a-4)的值为______。三、解答题(共78分)19.(8分)如图,在四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求四边形ABCD的对角线BD的长.20.(8分)解答下列各题(1)已知:如图1,直线AB、CD被直线AC所截,点E在AC上,且∠A=∠D+∠CED,求证:AB∥CD;(2)如图2,在正方形ABCD中,AB=8,BE=6,DF=1.①试判断△AEF的形状,并说明理由;②求△AEF的面积.21.(8分)如图,在中,平分交于点,,垂足为,且.若记,(不妨设),求的大小(用含的代数式表示).22.(10分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?23.(10分)一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.2倍匀速行驶,并比原计划提前半小时到达目的地.求汽车前一小时的行驶速度.24.(10分)2018年10月23日,港珠澳大桥正式开通.港珠澳大桥东起香港口岸人工岛,向西止于珠海洪湾,总长约55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.10月24日正式通车当天,甲乙两辆巴士同时从香港国际机场附近的香港口岸人工岛出发,已知甲乙两巴士的速度比是,乙巴士比甲巴士早11分钟到达洪湾,求两车的平均速度各是多少千米/时?25.(12分)如图,在中,,请用尺规在上作一点,使得直线平分的面积.26.如图,在锐角三角形ABC中,AB=13,AC=15,点D是BC边上一点,BD=5,AD=12,求BC的长度.
参考答案一、选择题(每题4分,共48分)1、D【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出△ABD≌△ACE,由全等三角形的对应边相等得到BD=CE;②由△ABD≌△ACE得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=180°.【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=360°-90°-90°=180°,本选项正确;故选D.【点睛】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.2、C【分析】根据绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:-0.00003=.故选:C.【点睛】本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、A【解析】根据直角三角形的性质得到AB=2BC,根据线段垂直平分线的性质得到DA=DB,根据直角三角形的性质、角平分线的性质判断即可.【详解】∵∠C=90°,∠A=30°,
∴∠ABC=60°,AB=2BC,
∵DE是AB的垂直平分线,
∴DA=DB,故B正确,不符合题意;
∵DA=DB,BD>BC,
∴AD>BC,故A错误,符合题意;
∴∠DBA=∠A=30°,
∴∠DBE=∠DBC,又DE⊥AB,DC⊥BC,
∴DE=DC,故C正确,不符合题意;
∵AB=2BC,AB=2AE,
∴BC=AE,故D正确,不符合题意;
故选:A.【点睛】考查的是直角三角形的性质、线段垂直平分线的性质、角平分线的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.4、A【分析】使分母等于0的未知数的值是分式方程的增根,即x=2,将x=2代入化简后的整式方程中即可求出k的值.【详解】,去分母得:1+2(x-2)=kx-1,整理得:2x-2=kx,∵分式方程有增根,∴x=2,将x=2代入2x-2=kx,2k=2,k=1,故选:A.【点睛】此题考查分式方程的增根,正确理解增根的意义得到未知数的值是解题的关键.5、D【解析】试题分析:根据角平分线的性质可得:点D到AB和AC的距离相等,根据题意可得:△ABD的面积为9,△ADC的面积为6,则AC的长度=6×2÷3=4.考点:角平分线的性质6、B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,∴=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.7、D【分析】根据分式有意义的条件是分母不等于零列出不等式,可得答案.【详解】解:选项A:;选项B:;选项C:;选项D:∵2x2+1>1,∴不论字母取何值都有意义.故选:D.【点睛】本题考查的知识点是分式有意义的条件,通过举反例也可排除不正确的选项.8、D【详解】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.9、D【分析】设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x,表示出一个角是2x-20°,①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,∴顶角是44°;②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时,x=2x-20°,解得x=20°,∴顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.10、B【解析】根据乌龟早出发,早到终点,结合各图象进行分析判断即可.【详解】A、兔子后出发,先到了,不符合题意;B、乌龟比兔子早出发,而早到终点,符合题意;C、乌龟先出发后到,不符合题意;D、乌龟先出发,与兔子同时到终点,不符合题意,故选B.【点睛】本题考查了函数图象,弄清题意,认真分析是解题的关键.11、D【分析】根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,DH=,CD=6x,根据三角形面积公式即可判断④.【详解】①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF-GF,DF=CD-FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵AE:AB=2:3,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH==,CD=6x,则S△DHC=×CD×HM=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确,所以正确的有4个,故选D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.12、B【分析】先由∠BAC=106°及三角形内角和定理求出∠B+∠C的度数,再根据线段垂直平分线的性质求出∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN,由∠EAN=∠BAC-(∠BAE+∠CAN)解答即可.【详解】∵△ABC中,∠BAC=106°,∴∠B+∠C=180°-∠BAC=180°-106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC-(∠BAE+∠CAN)=106°-74°=32°.故选B.【点睛】本题考查的是线段垂直平分线的性质及三角形内角和定理,能根据三角形内角和定理求出∠B+∠C=∠BAE+∠CAN=74°是解答此题的关键.二、填空题(每题4分,共24分)13、1【分析】利用坐标对称原理可作相应地推导.【详解】解:如图,当0<a<3时,∵P与P1关于y轴对称,P(﹣a,0),∴P1(a,0),又∵P1与P2关于l:直线x=3对称,设P2(x,0),可得:,即,∴P2(1﹣a,0),则.故答案为1.【点睛】掌握直角坐标系中坐标关于轴对称的原理为本题的关键.14、1.【分析】根据正数的两个平方根互为相反数列方程求出m,再求出3m+4,然后平方计算即可得解.【详解】解:根据题意知3m+4+2﹣m=0,解得:m=﹣3,所以这个数为(3m+4)2=(﹣5)2=1,故答案为1.【点睛】本题主要考查了平方根的定义.解题的关键是明确一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15、2【分析】设每分钟向容器内注水a厘米1,圆柱体A的高度为h,根据10分钟注满圆柱体A;再用9分钟容器全部注满,容器的高度为10,即可求解.【详解】解:设每分钟向容器内注水a厘米1,圆柱体A的高度为h,由题意得由题意得:,解得:a=2,h=4,故答案为:2.【点睛】主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16、3【分析】根据△ACM与△ABC全等,在网格上可以找到三个M点,可利用SSS证明△ACM与△ABC全等.【详解】根据题意在图中取到三个M点,分别为M1、M2、M3,如图所示:∵∴△ABC≌△CM1A∵∴△ABC≌△AM2C∵∴△ABC≌△CM3A故答案为:3【点睛】本题考查了全等三角形的性质和判定,本题主要利用SSS方法得到两个三角形全等.17、1【分析】先根据勾股定理求出OC的长度,然后再利用勾股定理求出OD的长度,最后利用CD=OC-OD即可得出答案.【详解】解:如图由题意可得:AC=BD=25m,AO=7m,AB=8m,CD即为所求则OC==21(m),当云梯的底端向左滑了8米,则OB=7+8=15(m),故OD==20(m),则CD=OC-OD=21-20=1m.故答案为:1.【点睛】本题主要考查勾股定理的应用,掌握勾股定理是解题的关键.18、-5【分析】先化简数式(a+1)(a-4),再用整体代入法求解即可.【详解】∵a2-3a+1=0,∴a2-3a=-1,(a+1)(a-4)=a2-3a-4=-1-4=-5【点睛】熟练掌握整式化简及整体代入法是解决本题的关键.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)由旋转的性质可得AC=BC,∠DBC=∠CAE,即可得∠ACB=90°,根据直角三角形的性质可得AE⊥BD,
(2)由旋转的性质可得CD=CE=3,BD=AE,∠DCE=∠ACB=90°,由勾股定理可求BD的长.【详解】(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,
∵旋转
∴AC=BC,∠DBC=∠CAE
又∵∠ABC=45°,
∴∠ABC=∠BAC=45°,
∴∠ACB=90°,
∵∠DBC+∠BMC=90°
∴∠AMN+∠CAE=90°
∴∠AND=90°
∴AE⊥BD,
(2)如图,连接DE,
∵旋转
∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°
∴DE==3,∠CDE=45°
∵∠ADC=45°
∴∠ADE=90°
∴EA==
∴BD=.【点睛】此题考查旋转的性质,勾股定理,熟练运用旋转的性质解决问题是本题的关键.20、(1)详见解析;(2)①△AEF是直角三角形,理由详见解析;②2.【分析】(1)延长AC至F,证明∠FCD=∠A,则结论得证;(2)①延长AF交BC的延长线于点G,证明△ADF≌△GCF,可得AF=FG,然后求出AE=EG,由等腰三角形的性质可得△AEF是直角三角形;②根据S△AEF=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF进行计算即可.【详解】解:(1)延长AC至F,如图1,∵∠FCD=∠CED+∠D,∠A=∠D+∠CED,∴∠FCD=∠A,∴AB∥CD;(2)①如图2,延长AF交BC的延长线于点G,∵正方形ABCD中,AB=8,DF=1,∴DF=CF=1,∵∠D=∠FCG=90°,∠AFD=∠CFG,∴△ADF≌△GCF(ASA),∴AF=FG,AD=GC=8,∵AB=8,BE=6,∴AE===10,CE=2,∵EG=CE+CG=2+8=10,∴AE=EG,∴EF⊥AG,∴△AEF是直角三角形;②∵AB=AD=8,DF=CF=1,BE=6,CE=2,S△AEF=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF,=,=61-21-16-1,=2.【点睛】本题是四边形综合题,考查了平行线的判定,正方形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质及三角形的面积计算等知识,熟练掌握全等三角形的判定与性质是解题的关键.21、∠CFE=().【分析】利用角平分线和两角互余的性质求出∠DAE,再利用平行线的性质解决问题即可.【详解】∵∠BAC=180°-∠B-∠ACB=180°-,AD平分∠BAC,
∴∠CAD=∠BAC=90°,
∵AE⊥BC,
∴∠AEC=90°,∴∠EAC=90°,∴∠DAE=∠CAD∠EAC=90°,
∵AD∥CF,
∴∠CFE=∠DAE=.【点睛】本题考查三角形内角和定理,角平分线的定义,平行线的性质等知识,解题的关键是熟练掌握基本知识.22、(1);(2)80米/分;(3)6分钟【分析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:
设线段AB的表达式为:y=kx+b(4≤x≤16),
把(4,240),(16,0)代入得:,
解得:,
即线段AB的表达式为:y=-20x+320(4≤x≤16),
(2)又线段OA可知:甲的速度为:=60(米/分),
乙的步行速度为:=80(米/分),
答:乙的步行速度为80米/分,
(3)在B处甲乙相遇时,与出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育赛事疫情防控及观众安全方案
- 环卫行业安全生产整治方案
- 石油运输车辆自燃应急方案
- 纪律心得体会
- 部编版语文小学三年级上学期期末试卷及解答参考
- 护士医德医风考评自我总结
- 城市农业政策支持与执行方案
- 学校违规经商办企业自查报告
- 通信基础设施建设质量方案
- 110kV线路工程技术规范方案
- (新版)食品生产企业食品安全员理论考试题库500题(含答案)
- 广西南宁市第十四中学2023-2024学年七年级上学期期中地理试题
- 2024-2030年中国应急产业市场发展分析及竞争形势与投资机会研究报告
- 2024年中国电动鼻毛器市场调查研究报告
- 2025年高考语文复习备考复习策略讲座
- 2024年中国具身智能行业研究:知行合一拥抱AI新范式-19正式版
- 数字中国发展报告(2023年)
- 缺乳(乳汁淤积)产妇的中医护理
- 《理解与尊重》主题班会
- 2024北师大版新教材初中数学七年级上册内容解读课件(深度)
- 金华市金投集团有限公司招聘笔试题库2024
评论
0/150
提交评论