




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列各数:3.141,−227,8,π,4.21·7A.1个 B.2 C.3个 D.4个2.如图,在△ABC中,AB=AC,BE,CF是中线,判定△AFC≌△AEB的方法是()A.SSS B.SAS C.AAS D.HL3.若二次根式有意义,且关于的分式方程有正数解,则符合条件的整数的和是()A.-7 B.-6 C.-5 D.-44.下列图形中对称轴条数最多的是()A.线段 B.正方形 C.圆 D.等边三角形5.若过多边形的每一个顶点只有6条对角线,则这个多边形是()A.六边形 B.八边形 C.九边形 D.十边形6.计算:A.0 B.1 C. D.396017.一个多边形的内角和等于外角和的两倍,那么这个多边形是()A.三边形 B.四边形 C.五边形 D.六边形8.已知,则的值为()A. B. C. D.9.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.110.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30° B.45° C.60° D.90°二、填空题(每小题3分,共24分)11.如图,已知,点,在边上,,,点是边上的点,若使点,,构成等腰三角形的点恰好只有一个,则的取值范围是______.12.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为__________.13.已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF//BC交AB于点E,交AC于点F.求证:BE+CF=EF.14.如图,在中,和的平分线交于点,得;和的平分线交于点,得;…;和的平分线交于点,得,则与的关系是______.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=________.16.如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.17.如果a+b=3,ab=4,那么a2+b2的值是_.18.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.三、解答题(共66分)19.(10分)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.20.(6分)甲、乙两家园林公司承接了某项园林绿化工程,知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的倍,如果甲公司先单独工作天,再由乙公司单独工作天,这样恰好完成整个工程的.求甲、乙两公司单独完成这项工程各需多少天?21.(6分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若,点在、内部,,,求的度数.(2)如图2,在AB∥CD的前提下,将点移到、外部,则、、之间有何数量关系?请证明你的结论.(3)如图3,写出、、、之间的数量关系?(不需证明)(4)如图4,求出的度数.22.(8分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.(1)若直线AB解析式为,①求点C的坐标;②求△OAC的面积.(2)如图2,作的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.23.(8分)已知,其中是一个含的代数式.(1)求化简后的结果;(2)当满足不等式组,且为整数时,求的值.24.(8分)已知:从边形的一个顶点出发共有条对角线;从边形的一个顶点出发的所有对角线把边形分成个三角形;正边形的边长为,周长为.求的值.25.(10分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.26.(10分)(1)如图1,在和中,点、、、在同一条直线上,,,,求证:.(2)如图2,在中,,将在平面内绕点逆时针旋转到的位置,使,求旋转角的度数.
参考答案一、选择题(每小题3分,共30分)1、C【解析】无理数就是无限不循环小数,依据定义即可判断.【详解】8=22,根据无理数的定义可知无理数有:8,π,0.1010010001……,故答案为【点睛】本题考查无理数的定义,解题的关键是掌握无理数的定义.2、B【分析】根据中线定义可得AE=AC,AF=AB,进而得到AF=AE,然后再利用SAS定理证明△AFC≌△AEB.【详解】解:∵BE、CF是中线,∴AE=AC,AF=AB,∵AB=AC,
∴AF=AE,
在△AFC和△AEB中,,∴△AFC≌△AEB(SAS),
故选:B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,根据已知条件在三角形中的位置来选择方法是正确解答本题的关键.3、A【分析】根据二次根式有意义得出m的范围,根据分式方程有正数解得出x的范围,继而可得整数m的值.【详解】解:解分式方程,,,∵分式方程有正数解,∴∴,∵有意义,∴,∴,∴符合条件的m的值有:-4,-3,-2,-1,0,1,2,和为-7.故选A.【点睛】本题主要考查分式方程的解和二次根式有意义的条件,熟练掌握解分式方程和二次根式的性质,并根据题意得到关于m的范围是解题的关键.4、C【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【详解】解:A、线段有2条对称轴;B、正方形有4条对称轴;C、圆有无数条对称轴;D、等边三角形有3条对称轴;故选:C.【点睛】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.5、C【分析】从n边形的一个顶点可以作条对角线.【详解】解:∵多边形从每一个顶点出发都有条对角线,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:C.【点睛】掌握边形的性质为本题的关键.6、B【解析】直接利用完全平方公式分解因式得出即可.【详解】解:1002-2×100×99+992=(100-99)2=1.故选:B.【点睛】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.7、D【解析】根据多边形的外角和为360°得到内角和的度数,再利用多边形内角和公式求解即可.【详解】解:设多边形的边数为x,∵多边形的内角和等于外角和的两倍,∴多边形的内角和为360°×2=720°,∴180°(n﹣2)=720°,解得n=6.故选D.【点睛】本题主要考查多边形的内角和与外角和,n边形的内角的和等于:(n-2)×180°(n大于等于3且n为整数);多边形的外角和为360°.8、A【分析】根据分式的加减运算法则即可求解.【详解】∵==∴=4故m+n=0,4m=4解得故选A.【点睛】此题主要考查分式运算的应用,解题的关键是熟知分式的加减运算法则.9、D【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.10、B【分析】根据得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵,∴点P到BC的距离=AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.二、填空题(每小题3分,共24分)11、或【分析】根据等腰三角形的性质分类讨论,分别求解范围即可.【详解】①如图1,当时,即,以为圆心,以1为半径的圆交于点,此时,则点,,构成的等腰三角形的点恰好只有一个.②如图1.当时,即,过点作于点,∴.∴,作的垂直平分线交于点,则.此时,以,,构成的等腰三角形的点恰好有1个.则当时,以,,构成的等腰三角形恰好只有一个.综上,当或时,以,,构成的等腰三角形恰好只有一个.【点睛】本题考查等腰三角形的判定,主要通过数形结合的思想解决问题,解题关键在于熟练掌握已知一边,作等腰三角形的画法.12、5.6×10-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.056用科学记数法表示为5.6×10-2,故答案为:5.6×10-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、证明见解析【详解】试题分析:根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.试题解析:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EBD=∠EDB,∴BE=ED,同理CF=DF,∴BE+CF=ED+DF=EF.考点:①等腰三角形的判定与性质;②平行线的性质.14、或【分析】根据角平分线的性质和外角的性质,得到,同理可得,则,由此规律可得,然后得到答案.【详解】解:∵平分,平分,∴,,∵,∴,∴,即,同理可得:,……∴,……∴;当时,有或;故答案为:或.【点睛】本题考查了三角形的角平分线性质和外角性质,解题的关键是掌握角平分线的性质和外角的性质得到,从而找到规律进行求解.15、11【分析】根据全等三角形的性质求出x和y即可.【详解】解:∵这两个三角形全等∴x=6,y=5∴x+y=11故答案为11.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.16、27【解析】∵BE⊥AC,AD=CD,
∴AB=CB,即△ABC为等腰三角形,
∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,
在△ABD和△CED中,,∴△ABD≌△CED(SAS),
∴∠E=∠ABE=27°.
故答案是:27.17、1.【分析】直接利用已知结合完全平方公式计算得出答案.【详解】∵a+b=3,ab=4,∴(a+b)2=a2+2ab+b2=9,∴a2+b2=9﹣2×4=1.故答案为:1.【点睛】此题主要考查了完全平方公式,正确应用公式是解题关键.18、1【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==1cm.故答案为1.考点:平面展开-最短路径问题.三、解答题(共66分)19、(1)证明见解析(2)∠MBC=∠F+∠FEC,证明见解析【解析】(1)根据三角形外角的性质,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根据∠A=∠ABC,即可得出答案;(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,结合(1)的结论证得答案即可.【详解】(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.20、甲公司单独30天完成,乙公司单独完成此工程的天数为45天.【分析】根据题意,设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x,通过等量关系式列方程求解即可.【详解】设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x,得,解得:.经检验,是原方程的解.则.答:甲、乙两公司单独完成这项工程分别需30天,45天.【点睛】本题主要考查了分式方程的实际问题,准确表达等量关系列式求解是解决本题的关键.21、(1)80°;(2)∠B=∠D+∠BPD,证明见解析;(3)∠BPD=∠B+∠D+BQD;;(4)360°.【分析】(1)过P作平行于AB的直线,根据内错角相等可得出三个角的关系,然后将∠B=50°,∠D=30°代入,即可求∠BPD的度数;(2)先由平行线的性质得到∠B=∠BOD,然后根据∠BOD是三角形OPD的一个外角,由此可得出三个角的关系;(3)延长BP交QD于M,再根据三角形的一个外角等于与它不相邻的两个内角的和解答;(4)根据三角形外角性质得出∠CMN=∠A+∠E,∠DNB=∠B+∠F,代入∠C+∠D+CMN+∠DNM=360°即可求出答案.【详解】(1)如图1,过P点作PO∥AB,∵AB∥CD,∴CD∥PO∥AB,∴∠BPO=∠B,∠OPD=∠D,∵∠BPD=∠BPO+∠OPD,∴∠BPD=∠B+∠D.∵∠B=50°,∠D=30°,∴∠BPD=∠B+∠D=50°+30°=80°;(2)∠B=∠D+∠BPD,∵AB∥CD,∴∠B=∠BOD,∵∠BOD=∠D+∠BPD,∴∠B=∠D+∠BPD;(3)如图:延长BP交QD于M在△QBM中:∠BMD=∠BQD+∠QBM在△PMD中:∠BPD=∠BMD+∠D=∠BQD+∠QBM+∠D故答案为:∠BPD=∠B+∠D+BQD∴、、、之间的数量关系为:∠BPD=∠B+∠D+BQD(4)如图∵∠CMN=∠A+∠E,∠DNB=∠B+∠F,又∵∠C+∠D+∠CMN+∠DNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.22、(1)①C(4,4);②12;(2)存在,1【解析】试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标;②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可;(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=1,AQ+PQ存在最小值,最小值为1.(1)①由题意,解得所以C(4,4);②把代入得,,所以A点坐标为(6,0),所以;(2)由题意,在OC上截取OM=OP,连结MQ∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工程管理课程考核试题及答案
- 2025年工程项目风险管理考试题及答案
- 压力初一满分作文9篇范文
- 国庆假期作文400字(15篇)
- 商业合作伙伴保密协议细节规定
- 在线会议服务合同书
- 《人类基因与遗传信息解读:高中生物教学教案》
- 秋天的怀念情感探究与写作技巧教案
- 初中文言文诵读课教案设计
- 语文文学《红楼梦主题作品教学大纲》
- 2025设备租赁合同版本范文
- 2025年全国高考数学真题全国2卷
- 2025年浙江杭州钱塘区和达能源有限公司招聘笔试冲刺题(带答案解析)
- 转让钓场合同协议书
- 2025年四川省成都市初中学业水平考试生物试题(无答案)
- 医院感染教学课件
- 民航危险品运输典型案例55课件
- 仓库管理制度及流程
- 四川省绵阳市名校联盟2025届八年级物理第二学期期末复习检测试题含解析
- 《全球教育资源库》课件
- 2025-2030中国烘焙食品行业市场发展分析与发展趋势及投资风险研究报告
评论
0/150
提交评论