2022-2023学年陕西省西安市(师大附中)数学八年级第一学期期末监测模拟试题含解析_第1页
2022-2023学年陕西省西安市(师大附中)数学八年级第一学期期末监测模拟试题含解析_第2页
2022-2023学年陕西省西安市(师大附中)数学八年级第一学期期末监测模拟试题含解析_第3页
2022-2023学年陕西省西安市(师大附中)数学八年级第一学期期末监测模拟试题含解析_第4页
2022-2023学年陕西省西安市(师大附中)数学八年级第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在代数式和中,均可以取的值为()A.9 B.3 C.0 D.-22.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确3.如图,给正五边形的顶点依次编号为1,2,3,4,1.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”,如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→1→1为第一次“移位”,这时他到达编号为1的顶点,然后从1→2为第二次“移位”.若小宇从编号为4的顶点开始,第2020次“移位”后,则他所处顶点的编号为().

A.2 B.3 C.4 D.14.如图,是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多反射),则该球最后将落入的球袋是(

)A.1号袋 B.2号袋 C.3号袋 D.4号袋5.如图,在平面直角坐标系中,点P坐标为(-4,3),以点B(-1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-6和-5之间 B.-5和-4之间 C.-4和-3之间 D.-3和-2之间6.下列方程中是二元一次方程的是()A. B.C. D.7.如图,等腰直角△ABC中,AC=BC,BE平分∠ABC,AD⊥BE的延长线于点D,若AD=2,则△ABE的面积为().A.4 B.6 C.2 D.28.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118° B.119° C.120° D.121°9.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有①②③④A.1个 B.2个 C.3个 D.4个10.下列各数是无理数的是()A.3.14 B. C. D.二、填空题(每小题3分,共24分)11.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片_____张,B类卡片_____张,C类卡片_____张.12.有6个实数:,,,,,,其中所有无理数的和为______.13.如图,在中,是的垂直平分线,且分别交于点和,,则等于_______度.14.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为_______.15.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)和(3,0),点C是y轴上的一个动点,连接AC、BC,则△ABC周长的最小值是_____.16.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD为∠CAB的角平分线,若CD=3,则DB=____.17.如图,∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,则∠B=__________°.18.如图,△ABC中,EF是AB的垂直平分线,与AB、AC分别交于点D、F,BF=8,CF=2,则AC=______.三、解答题(共66分)19.(10分)如图,点、是线段上的点,,,垂足分别是点和点,,,求证:.20.(6分)2019年11月30日上午符离大道正式开通,同时宿州至徐州的K902路城际公交开通试运营,小明先乘K902路城际公交车到五柳站下车,再步行到五柳景区游玩,从出发地到五柳景区全程31千米,共用了1个小时,已知步行的速度每小时4千米,K902路城际公交的速度是步行速度的10倍,求小明乘公交车所行驶的路程和步行的路程.21.(6分)定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF,连接DE,EF,DF,得到△DEF.若点O为△ABC的外心,求证:点O也是△DEF的外心.22.(8分)每年的月日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为吨.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.23.(8分)图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)图b中,大正方形的边长是.阴影部分小正方形的边长是;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.24.(8分)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:如图1,已知:在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、试猜想DE、BD、CE有怎样的数量关系,请直接写出;组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有其中为任意锐角或钝角如果成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是角平分线上的一点,且和均为等边三角形,D、E分别是直线m上A点左右两侧的动点、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若,试判断的形状,并说明理由.25.(10分)如图,设图中每个小正方形的边长为1,(1)请画出△ABC关于y轴对称图形△A′B′C′,其中ABC的对称点分别为A′B′C′;(2)直接写出A′、B′、C′的坐标.26.(10分)甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据分式与算术平方根式有意义的条件,可得x的取值范围,一一判断可得答案.【详解】解:有题意得:和由意义,得:,可得;x>3,其中x可以为9,故选A.【点睛】本题主要考查分式与算术平方根式有意义的条件.2、A【分析】如图1,根据线段垂直平分线的性质得到,,则根据“”可判断,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形为平行四边形,则根据平行四边形的性质得到,,则根据“”可判断,则可对乙进行判断.【详解】解:如图1,垂直平分,,,而,,所以甲正确;如图2,,,∴四边形为平行四边形,,,而,,所以乙正确.故选:A.【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.3、C【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】根据题意,小宇从编号为3的顶点开始,第1次移位到点3,

第2次移位到达点1,

第3次移位到达点2,

第3次移位到达点3,

…,

依此类推,3次移位后回到出发点,

2020÷3=101.

所以第2020次移位到达点3.

故选:C.【点睛】此题对图形变化规律的考查,根据“移位”的定义,找出每3次移位为一个循环组进行循环是解题的关键.4、C【分析】根据题意,画出图形,由轴对称的性质判定正确选项.【详解】解:根据轴对称的性质可知,台球走过的路径为:

故选C.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.5、A【解析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【详解】∵点P坐标为(-4,3),点B(-1,0),

∴OB=1,

∴BA=BP==3,

∴OA=3+1,

∴点A的横坐标为-3-1,

∵-6<-3-1<-5,

∴点A的横坐标介于-6和-5之间.

故选A.【点睛】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解题的关键.6、B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:化简得,最高次是2次,故A选项错误;是二元一次方程,故B选项正确;不是整式方程,故C选项错误;最高次是2次,故D选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键.7、A【分析】过点E作于F,设,运用等腰直角三角形将其它各未知线段用表示;延长AD与BC的延长线交于点G,依据ASA判定△ABD≌△GBD,依据全等的性质求得DG=AD=2,,继而得到AG=4,;接着在直角△ACG中,运用勾股定理列出关于的方程,解出代入到中即可.【详解】解:延长AD与BC的延长线交于点G,过点E作于F,易得是等腰直角三角形,∴∵BE平分∠ABC,EC⊥BC,,∴EF=EC,,∴设则,,∵AD⊥BE,∴,∵在△ABD和△GBD中,∴△ABD≌△GBD(ASA)∴DG=AD=2,∴AG=4,∵在直角△ACG中,ACG=90°,,AG=4,,∴∴∴=4.故选:A.【点睛】本题考查了等腰直角三角形三边关系、运用全等构造等腰三角形和勾股定理的综合问题,设立未知数表示各未知线段、根据图形特征作辅助线构造熟悉图形、并根据勾股定理建立起各未知量之间的等式是解题的关键.8、C【解析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.9、B【解析】试题解析:①x3+x=x(x2+1),不符合题意;②x2-2xy+y2=(x-y)2,符合题意;③a2-a+1不能分解,不符合题意;④x2-16y2=(x+4y)(x-4y),符合题意,故选B10、D【分析】根据无理数的定义进行判断即可.【详解】A、3.14是有限小数,是有理数;B、,是有理数;C、,是有理数;D、,属于开方开不尽的数,是无理数;故选D.【点睛】本题考查无理数的定义和分类,无限不循环小数是无理数.二、填空题(每小题3分,共24分)11、211【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【详解】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+1ab+b2,∵A图形面积为a2,B图形面积为b2,C图形面积为ab,∴需要A类卡片2张,B类卡片1张,C类卡片1张.故答案为:2;1;1.【点睛】本题考查了多项式与多项式的乘法运算的应用,正确列出算式是解答本题的关键.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.12、【分析】先根据无理数的定义,找出这些数中的无理数,再计算所有无理数的和.【详解】无理数有:,,,∴==故答案为:.【点睛】本题是对无理数知识的考查,熟练掌握无理数的知识和实数计算是解决本题的关键.13、20【分析】先根据三角形的内角和求出∠ABC的度数,再根据是的垂直平分线得出AE=BE,从而得出∠ABE=∠A=50°,再计算∠EBC即可.【详解】∵,∴∠ABC=180°-∠A-∠C=70°,∵是的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∴∠EBC=70°-50°=20°.故答案为20.【点睛】本题考查三角形的内角和定理和线段垂直平分线的性质,根据是的垂直平分线得出AE=BE是解题的关键.14、50+0.3x≤1200【分析】至多意思是小于或等于.本题满足的不等关系为:制版费+单张印刷费×数量≤1.【详解】解:根据题意,该公司可印刷的广告单数量x(张)满足的不等式为:故答案为:.15、【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点,连接交y轴于点C,点C即为使AC+BC最小的点,作轴于E,由勾股定理求出,即可得出结果.【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB=;要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点,连接交y轴于点C,点C即为使AC+BC最小的点,作轴于E,由对称的性质得:AC=,则AC+BC=,=3,OE=1,∴BE=4,由勾股定理得:=,∴△ABC的周长的最小值为.故答案为:.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.16、1【分析】先根据三角形的内角和定理,求出∠BAC的度数=180°﹣90°﹣30°=10°,然后利用角平分线的性质,求出∠CAD的度数∠BAC=30°.在Rt△ACD中,根据30°角所对的直角边等于斜边的一半,即可求出AD的长,进而得出BD.【详解】在Rt△ABC中∠C=90°,∠B=30°,∴∠BAC=180°﹣90°﹣30°=10°.∵AD是角平分线,∴∠BAD=∠CAD∠BAC=30°.在Rt△ACD中,∵∠CAD=30°,CD=3,∴AD=1.∵∠B=∠BAD=30°,∴BD=AD=1.故答案为1.【点睛】本题考查了含30°角的直角三角形,熟记含30°角的直角三角形的性质是解题的关键.17、50【解析】分析:根据三角形外角的性质进行计算即可.详解:∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,故答案为50.点睛:考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.18、1【分析】根据垂直平分线的性质可得AF=BF=8,然后根据已知条件即可求出结论.【详解】解:∵EF是AB的垂直平分线,BF=8,∴AF=BF=8∵CF=2,∴AC=AF+CF=1故答案为:1.【点睛】此题考查的是垂直平分线的性质,掌握垂直平分线的性质找到相等线段是解决此题的关键.三、解答题(共66分)19、见解析【分析】先根据“HL”证明△ADE≌△BCF,可证∠A=∠B,然后根据内错角相等,两直线平行即可解答.【详解】∵,,∴∠D=∠C=90°.∵,∴AE=BF.在△ADE和△BCF中,∵AE=BF,,∴△ADE≌△BCF(HL),∴∠A=∠B,∴.【点睛】本题主要考查了平行线的判定,全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.20、30千米;1千米【分析】设小明行驶的路程为x千米,步行的路程y千米,根据题意可得等量关系:①步行的路程+行驶的路程=31千米;②公交车行驶x千米时间+步行y千米的时间=1小时,根据题意列出方程组即可.【详解】解:设小明乘车路程为x千米,步行的路程y千米,∵公交的速度是步行速度的10倍,步行的速度每小时4千米,∴公交的速度是每小时40千米,由题意得:,解得:,∴小明乘公交车所行驶的路程为30千米,步行的路程为1千米.【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系.21、(1)定点O是△ABC的外心有道理,理由见解析;(2)见解析【分析】(1)连接、、,如图①,根据线段垂直平分线的性质得到,,则,从而根据三角形的外心的定义判断点是的外心;(2)连接、、、,如图②,利用等边三角形的性质得到,,再计算出,接着证明得到,同理可得,所以,然后根据三角形外心的定义得到点是的外心.【详解】(1)解:定点是的外心有道理.理由如下:连接、、,如图①,,的垂直平分线得到交点,,,,点是的外心;(2)证明:连接、、、,如图②,点为等边的外心,,,,,在和中,,,同理可得,,点是的外心.【点睛】本题考查了线段垂直平分线性质和全等三角形的判定、等边三角形的性质.掌握线段垂直平分线性质和构造三角形全等是解题关键.22、(1)甲万元,乙万元;(2)有种;(3)选购甲型设备台,乙型设备台【分析】(1)设甲型设备每台的价格为x万元,乙型设备每台的价格为y万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲型设备m台,则购买乙型设备(10−m)台,由购买甲型设备不少于3台且预算购买节省能源的新设备的资金不超过110万元,即可得出关于m的一元一次不等式组,解之即可得出各购买方案;(3)由每月要求总产量不低于2040吨,可得出关于m的一元一次不等式,解之结合(2)的结论即可找出m的值,再利用总价=单价×数量求出两种购买方案所需费用,比较后即可得出结论.【详解】解:(1)设甲型设备每台的价格为万元,乙型设备每台的价格为万元,根据题意得:,解得:答:甲型设备每台的价格为万元,乙型设备每台的价格为万元.(2)设购买甲型设备台,则购买乙型设备台,根据题意得:解得:∵取非负整数,∴∴该公司有种购买方案,方案一:购买甲型设备台、乙型设备台;方案二:购买甲型设备台、乙型设备台;方案三:购买甲型设备台、乙型设备台(3)由题意:,解得:,∴为或当时,购买资金为:(万元)当m=5时,购买资金为:(万元)∵,∴最省钱的购买方案为:选购甲型设备台,乙型设备台【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,正确列出一元一次不等式.23、(1)m+n;m–n;(2)(m−n)2=(m+n)2–4mn,理由见解析.【解析】分析:(1)观察图形很容易得出图b中大正方形的边长和阴影部分小正方形的边长;(2)观察图形可知大正方形的面积(m+n)2,减去阴影部分的正方形的面积(m−n)2等于四块小长方形的面积4mn,即(m−n)2=(m+n)2–4mn;详解:(1)m+n;m−n(2)解:(m−n)2=(m+n)2–4mn理由如下:右边=(m+n)2−

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论