2022-2023学年陕西省先电子科技中学数学八上期末考试模拟试题含解析_第1页
2022-2023学年陕西省先电子科技中学数学八上期末考试模拟试题含解析_第2页
2022-2023学年陕西省先电子科技中学数学八上期末考试模拟试题含解析_第3页
2022-2023学年陕西省先电子科技中学数学八上期末考试模拟试题含解析_第4页
2022-2023学年陕西省先电子科技中学数学八上期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列图形中,已知,则可得到的是(

)A. B. C. D.2.如图①是一直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.cm C.cm D.3cm3.如图,是的角平分线,将沿所在直线翻折,点落在边上的点处.若,则∠B的大小为()A.80° B.60° C.40° D.30°4.为你点赞,你是最棒的!下列四种表情图片都可以用来为你点赞!其中是轴对称图形的是()A. B. C. D.5.下列运算正确的是()A.=±4 B.(ab2)3=a3b6C.a6÷a2=a3 D.(a﹣b)2=a2﹣b26.下列各数组中,不是勾股数的是()A.5,12,13 B.7,24,25C.8,12,15 D.3k,4k,5k(k为正整数)7.在下列交通标识图案中,不是轴对称图形的是()A. B. C. D.8.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB最短.下面四种选址方案符合要求的是()A. B.C. D.9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为41,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=41;②a-b=2;③2ab=45;④a+b=1.其中正确的结论是()A.①②③ B.①②③④ C.①③ D.②④10.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=6,BC=4,△PBC的周长等于()A.10 B.12 C.14 D.1611.已知△ABC为直角坐标系中任意位置的一个三角形,现将△ABC的各顶点横坐标乘以-1,得到△A1B1C1,则它与△ABC的位置关系是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.关于直线y=x对称12.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80° B.80°或50° C.20° D.80°或20°二、填空题(每题4分,共24分)13.比较大小______5(填“>”或“<”).14.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.15.如图,一束平行太阳光线、照射到正五边形上,,则的度数是________.16.如图,,若,则的度数是__________.17.把因式分解的结果是______.18.如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,BD=4.6,则D到AB的距离为.三、解答题(共78分)19.(8分)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?20.(8分)请写出求解过程(1)一个多边形的内角和是720°,求这个多边形的边数.(2)在△ABC中,∠C=90°,∠A=2∠B,求∠A,∠B的度数.21.(8分)如图,已知△ABC的顶点分别为A(-2,2)、B(-4,5)、C(-5,1)和直线m(直线m上各点的横坐标都为1).(1)作出△ABC关于x轴对称的图形,并写出点的坐标;(2)作出点C关于直线m对称的点,并写出点的坐标;(3)在x轴上画出点P,使PA+PC最小.22.(10分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”.高铁事业是“中国创造”的典范,它包括D字头的动车以及G字头的高铁,已知,由站到站高铁的平均速度是动车平均速度的倍,行驶相同的路程400千米.高铁比动车少用个小时.(1)求动车的平均速度;(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段站到站的动车票价为元/张,高铁票价为元/张,求动车票价为多少元/张时,高铁的性价比等于动车的性价比?23.(10分)解不等式组并写出不等式组的整数解.24.(10分)如图,已知线段AB,根据以下作图过程:(1)分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点;(2)过C、D两点作直线CD.求证:直线CD是线段AB的垂直平分线.25.(12分)先化简,再求值.,其中x满足.26.列分式方程解应用题.为缓解市区至通州沿线的通勤压力,北京市政府利用既有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.

参考答案一、选择题(每题4分,共48分)1、B【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.【详解】解:.和的是对顶角,不能判断,此选项不正确;.和的对顶角是同位角,且相等,所以,此选项正确;.和的是内错角,且相等,故,不是,此选项错误;.和互为同旁内角,同旁内角相等,两直线不一定平行,此选项错误.故选.【点睛】本题考查平行线的判定,熟练掌握平行线的判定定理是解题关键.2、A【解析】因为在直角三角形中,∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得:故得:DB=,,根据折叠的性质得:,故△EDB为直角三角形,又因为,故DE=DBtan30°=cm,故答案选A.3、C【分析】根据翻折的性质可得AE=AB,DE=BD,∠AED=∠B,根据AB+BD=AC可得DE=CE,根据等腰三角形的性质及外角性质可得∠AED的度数,即可得答案.【详解】∵将沿所在直线翻折,点落在边上的点处.∴AE=AB,DE=BD,∠AED=∠B,∵AB+BD=AC,AC=AE+CE,∴DE=CE,∴∠C=∠CDE,∵∠C=20°,∠ADE=∠C+∠CDE,∴∠ADE=2∠C=40°,∴∠B=40°,故选:C.【点睛】本题考查翻折的性质、等腰三角形的性质及三角形外角的性质,翻折前后两个图形全等,对应边相等,对应角相等;三角形的一个外角等于和它不相邻的两个内角的和;等腰三角形的两个底角相等;熟练掌握相关性质是解题关键.4、A【分析】根据轴对称图形的定义逐项识别即可,在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫做轴对称图形.据此解答即可.【详解】A是轴对称图形,其余的不是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.5、B【分析】分别根据算术平方根的定义,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.,故本选项不合题意;B.(ab2)3=a3b6,正确;C.a6÷a2=a4,故本选项不合题意;D.(a﹣b)2=a2﹣2ab+b2,故本选项不合题意.故选:B.【点睛】本题主要考查了算术平方根,幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,熟记相关运算法则是解答本题的关键.6、C【分析】验证两个较小数的平方和是否等于最大数的平方即可.【详解】解:A、52+122=132,是勾股数,故错误;B、72+242=252,是勾股数,故错误;C、82+122≠152,不是勾股数,故正确;D、(3k)2+(4k)2=(5k)2,是勾股数,故错误.故选:C.【点睛】本题考查了勾股数的定义:可以构成一个直角三角形三边的一组正整数.7、D【分析】根据轴对称图形的概念对各个选项进行判断即可.【详解】A、B、C中的图案是轴对称图形,D中的图案不是轴对称图形,故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.8、A【分析】根据轴对称的性质和线段的性质即可得到结论.【详解】解:根据题意得,在公路l上选取点P,使PA+PB最短.则选项A符合要求,故选:A.【点睛】本题考查轴对称的性质的运用,最短路线问题数学模式的运用,也考查学生的作图能力,运用数学知识解决实际问题的能力.9、A【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4××ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.【详解】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方=a2+b2,由图知,大正方形的边长为直角三角形的斜边长,∴大正方形的面积=斜边的平方=a2+b2,即a2+b2=41,故①正确;根据题意得4个直角三角形的面积=4××ab=2ab,4个直角三角形的面积=S大正方形-S小正方形=41-4=45,即2ab=45,故③正确;由①③可得a2+b2+2ab=41+45=14,即(a+b)2=14,∵a+b>0,∴a+b=,故④错误,由①③可得a2+b2-2ab=41-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A.【点睛】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键.10、A【分析】先根据等腰三角形的性质得出AC=AB=6,再根据线段垂直平分线的性质得出AP=BP,故AP+PC=AC,由此即可得出结论.【详解】解:∵△ABC中,AB=AC,AB=6,∴AC=6,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=1.故选:A.【点睛】本题考查的是线段垂直平分线的性质,三角形的周长计算方法,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11、B【分析】已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),从而求解.【详解】根据轴对称的性质,∵横坐标都乘以−1,∴横坐标变成相反数,根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴△ABC与△A′B′C′关于y轴对称,故选:B.【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,比较简单.12、D【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.二、填空题(每题4分,共24分)13、<【分析】根据算术平方根的意义,将写成,将5写成,然后再进行大小比较.【详解】解:∵,又∵,∴,即.故答案为:<.【点睛】本题考查实数的大小比较,掌握算术平方根的意义正确将写成,将5写成,是本题的解题关键.14、十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.15、【分析】根据正五边形的性质与平行线的性质,即可求解.【详解】∵在正五边形中,∴∠BAE=,∵∥,∴∠BAF+∠ABG=180°,∴=180°-108°-46°=.故答案为:.【点睛】本题主要考查正五边形的性质与平行线的性质,掌握正五边形的每个内角等于108°以及两直线平行,同旁内角互补,是解题的关键.16、【分析】根据平行线的性质得出,然后利用互补即可求出的度数.【详解】∵故答案为:.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.17、3a(b-1)1【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=3a(b1-1b+1)=3a(b-1)1,

故答案为:3a(b-1)1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18、2.1【解析】先根据线段的垂直平分线的性质得到DB=DA,则有∠A=∠ABD,而∠C=90°,∠DBC=10°,利用三角形的内角和可得∠A+∠ABD=90°-10°=60°,得到∠ABD=10°,在Rt△BED中根据含10°的直角三角形三边的关系即可得到DE=BD=2.1cm.解:∵DE垂直平分AB,∴DB=DA,∴∠A=∠ABD,而∠C=90°,∠DBC=10°,∴∠A+∠ABD=90°-10°=60°,∴∠ABD=10°,在Rt△BED中,∠EBD=10°,BD=4.6cm,∴DE=BD=2.1cm,即D到AB的距离为2.1cm.故答案为2.1.三、解答题(共78分)19、(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意列出分式方程即可求出结论;(2)根据题意,求出该校购买甲种足球和乙种足球的数量即可得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意列出一元一次方程即可求出结论.【详解】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.20、(1)6;(2)∠B=30°,∠A=60°【分析】(1)设这个多边形的边数为n,根据多边形的内角和定理得到(n-2)×180°=720°,然后解方程即可.(2)首先根据在Rt△ABC中,∠C=90°,可得∠A+∠B=90°;然后根据∠A=2∠B,求出∠A,∠B的度数各是多少即可.【详解】(1)解:设这个多边形的边数为n(n-2)180°=720°n=6答:这个多边形的边数为6(2)解:在△ABC中,∵∠C=90°∴∠A+∠B=90°又∵∠A=2∠B∴2∠B+∠B=90∴∠B=30°∴∠A=60°【点睛】此题考查多边形的内角和定理,直角三角形的性质和应用,解题关键是根据n边形的内角和为(n-2)×180°解答.21、(1)图见解析,A(-2,-2);(2)图见解析,C2(7,1);(3)图见解析【分析】(1)根据轴对称关系确定点A1、B1、C1的坐标,顺次连线即可;(2)根据轴对称的性质解答即可;(3)连接AC1,与x轴交点即为点P.【详解】(1)如图,A1(-2,-2);(2)如图,C2的坐标为(7,1);(3)连接AC1,与x轴交点即为所求点P.【点睛】此题考查轴对称的性质,利用轴对称关系作图,确定直角坐标系中点的坐标,最短路径问题作图,正确理解轴对称的性质是解题的关键.22、(1)动车的平均速度为240千米/时;(2)动车票价为250元/张时,高铁的性价比等于动车的性价比.【分析】(1)设动车的平均速度为千米/时,则高铁的平均速度为千米/时,利用行驶相同的路程400千米.高铁比动车少用个小时,列分式方程,解分式方程并检验,从而可得答案;(2)分别根据题意表示:高铁的性价比为,动车的性价比为,再列分式方程,解分式方程并检验,从而可得答案.【详解】解:(1)设动车的平均速度为千米/时,则高铁的平均速度为千米/时,由题意:,整理得,解得,经检验是所列分式方程的解.答:动车的平均速度为240千米/时.(2)∵高铁的性价比为,动车的性价比为,由题意得:,∴,∴,经检验,是所列方程的解.答:动车票价为250元/张时,高铁的性价比等于动车的性价比.【点睛】本题考查的是分式方程的应用,掌握利用分式方程解应用题的基本步骤,由题意确定相等关系是解题的关键,注意检验.23、不等式组的解集是,整数解是.【分析】首先解两个一元一次不等式,然后求两个不等式解集的公共部分,最后写出不等式组的整数解.【详解】解:,解不等式①得:解不等式②得:∴不等式组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论