版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列选项中的汽车品牌标志图,不是轴对称图形的是()A. B. C. D.2.一副三角板如图摆放,则的度数为()A. B. C. D.3.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°4.若一个三角形的两边长分别为2和4,则第三边长可能是().A.1 B.2 C.3 D.75.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是()秒A.2.5 B.3 C.3.5 D.46.x,y满足方程,则的值为()A. B.0 C. D.7.若分式的值为0,则的值是()A. B. C. D.8.四舍五入得到的近似数6.49万,精确到()A.万位 B.百分位 C.百位 D.千位9.若分式的值不存在,则的值是()A. B. C. D.10.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等 B.两个锐角对应相等C.一条直角边和斜边对应相等 D.一个锐角和锐角所对的直角边对应相等11.下列各式中,能运用“平方差公式”进行因式分解的是()A. B. C. D.12.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE的长为()A. B. C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系中,若点和点关于轴对称,则的值为_______.14.如图,中,,,,平分,为的中点.若,,则__________.(用含,的式子表示)15.如图,小明站在离水面高度为8米的岸上点处用绳子拉船靠岸,开始时绳子的长为17米,小明以1米每秒的速度收绳,7秒后船移动到点的位置,问船向岸边移动了______米(的长)(假设绳子是直的).16.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图1中的点的坐标为__________,图2中的值为__________.17.如果关于的二次三项式是完全平方式,那么的值是__________.18.小明用计算一组数据的方差,那么=____.三、解答题(共78分)19.(8分)某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①CF与BC的位置关系为;②CF,DC,BC之间的数量关系为(直接写出结论);(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.20.(8分)(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是.(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.21.(8分)计算和解方程:(1);(2);(3);(4).22.(10分)如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.23.(10分)如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立平面直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.24.(10分)(1)解不等式,并把解表示在数轴上.(2)解不等式组.25.(12分)如图,在平面直角坐标系中,一次函数的图象与轴的交点为,与轴的交点为,且与正比例函数的图象交于点.(1)求的值及一次函数的解析式;(2)观察函数图象,直接写出关于的不等式的解集.26.先化简,再求值:(1),其中,;(2),再从1,2,3中选取一个适当的数代入求值.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、B、D是轴对称图形,故不符合题意;C不是轴对称图形,符合题意.故选C.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.2、C【分析】根据三角板的特点可得∠2和∠3的度数,然后利用三角形内角和定理求出∠1即可解决问题.【详解】解:如图,根据三角板的特点可知:∠2=60°,∠3=45°,∴∠1=180°-60°-45°=75°,∴∠α=∠1=75°,故选:C.【点睛】本题主要考查了三角形内角和定理,熟知三角形的内角和等于180°是解题的关键.3、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D=∠A=×30°=15°.
故选A.
【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.4、C【分析】利用三角形的三边关系定理求出第三边长的取值范围,由此即可得.【详解】设第三边长为,由三角形的三边关系定理得:,即,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了三角形的三边关系定理的应用,熟记三角形的三边关系定理是解题关键.5、D【详解】解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=1.故选D.【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.6、A【分析】利用整体法将两式相加,即可求得.【详解】解:,①+②得:,,故选A.【点睛】本题考查代数式的求值,灵活运用加减消元的思想是关键.7、B【分析】分式的值是1,则分母不为1,分子是1.【详解】解:根据题意,得且,
解得:.
故选:B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.8、C【分析】找出最后一位上的数字所在的数位即可得出答案.【详解】近似数6.49万中最后一位数字9落在了百位上,所以近似数6.49万精确到百位,故选C.【点睛】本题考查了精确度问题,熟知近似数最后一位数字所在的位置就是精确度是解题的关键.9、D【解析】根据分式的值不存在,可得分式无意义,继而根据分式无意义时分母为0进行求解即可得.【详解】∵分式的值不存在,∴分式无意义,∴2x-3=0,∴x=,故选D.【点睛】本题考查了分式无意义的条件,弄清题意,熟练掌握分母为0时分式无意义是解题的关键.10、B【分析】根据全等三角形的判定定理:AAS、SAS、ASA、SSS及直角三角形的判定定理HL对4个选项逐个分析,然后即可得出答案.【详解】解:A、两条直角边对应相等,可利用全等三角形的判定定理SAS来判定两直角三角形全等,故本选项正确;
B、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;
C、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理ASA来判定两个直角三角形全等;故本选项正确;
D、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理ASA或AAS来判定两个直角三角形全等;故本选项正确;
故选:B.【点睛】本题考查了直角全等三角形的判定.注意,判定两个三角形全等时,必须有边的参与.11、B【分析】根据平方差公式的特点:①两项式;②两个数的平方差,对每个选项进行判断即可.【详解】A.,提公因式进行因式分解,故A选项不符合题意B.,利用平方差公式进行因式分解,故B选项符合题意C.=(x-2),运用完全平方公式进行因式分解,故C选项不符合题意D.,不能因式分解,故D选项不符合题意故选:B【点睛】本题考查了用平方差公式进行因式分解的知识,解题的关键是掌握平方差公式特点.12、D【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【详解】解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=x,
∴AD=DC=x,
∵△ABC是等边三角形,
∴BC=AC=2x,BD⊥AC,
在Rt△BDC中,由勾股定理得:故选:D.【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.二、填空题(每题4分,共24分)13、【分析】由关于x轴对称横坐标相同可列出关于m的一元一次方程,求解即可.【详解】解:由点和点关于轴对称可得点P与点Q的横坐标相同即,解得.所以的值为.故答案为:.【点睛】本题考查了平面直角坐标系中的轴对称,灵活利用点关于坐标轴对称的特点是解题的关键.14、【分析】根据等边三角形的判定,在边CA上截取CT=CB,连接BT,得是等边三角形,由等边三角形的性质,是角平分线,也是底边的中垂线,可得,由外角性质证明为等腰三角形,得到,过点F作,知为的中位线,,可求得.【详解】在边CA上截取CT=CB,连接BT,DT,过点F作,连接EH,,,是等边三角形,,平分,垂直平分BT,DT=DB,,是的外角,,,,,,又为的中点,,,,,,,,,为的中位线,.故答案为:.【点睛】考查了等边三角形的判定、性质,等腰三角形的判定性质,中垂线的判定和性质,以及外角的性质和三角形中位线的性质,熟记三角形的性质,判定定理是解决几何图形题的关键.15、1【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】在Rt△ABC中:
∵∠CAB=10°,BC=17米,AC=8米,
∴(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,
∴(米),
∴(米),∴(米),
答:船向岸边移动了1米.
故答案为:1.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.16、(1,0)5【解析】令直线y=x-3=0,解得x=3,即可得直线y=x-3与x轴的交点坐标为(3,0),根据图可知,开始平移2s后直线到达点A,所以点A横坐标为3-2=1,所以点A坐标为(1,0);由图象2可知,直线y=x-3平移12s时,正好经过点C,此时平移后的直线与x轴交点的横坐标为(-9,0),所以点A到这个交点的距离为10,即可得AD=5,根据勾股定理求得BD=5,当y=x-3平移到BD的位置时m最大,即m最大为5,所以b=5.点睛:本题主要考查了一次函数图像的平移,根据图象获取信息是解决本题的关键.17、【分析】根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.【详解】解:∵是完全平方式∴-mx=±2×2•3x,
解得:m=±1.故答案为:±1.【点睛】本题是完全平方公式的考查,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.18、1【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解.【详解】解:由题意可得,这组数据共10个数,且它们的平均数是3∴=10×3=1故答案为:1.【点睛】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=.三、解答题(共78分)19、(1)①垂直;②BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由见解析;(3)CE=3.【分析】(1)①由∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)由∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示,想办法证明△ADH≌△DEM(AAS),推出EM=DH=3,DM=AH=2,推出CM=EM=3,即可解决问题.【详解】解:(1)①等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:垂直,BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由如下:∵等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示:∵∠BAC=90°,AB=AC=2,∴BC=AB=4,AH=BH=CH=BC=2,∴CD=BC=1,∴DH=CH+CD=3,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM(AAS),∴EM=DH=3,DM=AH=2,∴CM=EM=3,∴CE==3.【点睛】本题考查几何变换综合题,全等三角形的判定和性质,余角的性质,勾股定理,等腰直角三角形的判定和性质,矩形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.20、(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;证明见解析.【分析】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【详解】(1)EF=BE+DF,理由如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,如图2,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.21、(1);(2);(3),;(4),.【分析】(1)利用二次根式的乘法运算法则进行计算;(2)利用二次根式的加减运算法则进行计算;(3)用因式分解法解一元二次方程;(4)用配方法解一元二次方程.【详解】(1)原式;(2)原式;(3),;(4),,.【点睛】本题考查二次根式的运算和解一元二次方程,解题的关键是掌握二次根式的运算法则和一元二次方程的各个解法.22、证明见解析.【分析】根据对顶角的性质得到BD∥CE的条件,然后根据平行线的性质得到∠B=∠C,已知∠C=∠D,则得到满足AB∥EF的条件,再根据两直线平行,内错角相等得到∠A=∠F.【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠D=∠ABD,∴AB∥EF,∴∠A=∠F.考点:平行线的判定与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024土石方工程建设项目协议
- 保安人员2024年度聘用协议汇编
- 2024年眼镜店专属劳动协议模板
- 2024年国际工程项目协议规范指南
- 东北三省三校2025届高三11月期中联考地理试题(含答案详解)
- 2024年房屋建设施工协议范本
- 2024年固定期限劳动协议范例
- 2024年建筑材料采购协议范本
- 2024 年小时工派遣协议范本
- 2024年专业足疗师服务劳务协议模板
- 跨平台移动应用开发技术
- 十二指肠溃疡伴穿孔的护理查房
- 市场营销策划(本)-形考任务三(第八~十章)-国开(CQ)-参考资料
- 中信证券测评真题答案大全
- 部编版小学六年级道德与法治上册全册知识点汇编
- 数字时代的数字化政府
- 文旅推广短片策划方案相关7篇
- 2023-2024学年高中主题班会燃激情之烈火拓青春之华章 课件
- 中医药文化进校园-中医药健康伴我行课件
- 市政管道开槽施工-市政排水管道的施工
- 居住建筑户型分析
评论
0/150
提交评论