版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.有一组数据:2,﹣2,2,4,6,7这组数据的中位数为()A.2 B.3 C.4 D.62.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.83.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)4.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:45.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠06.二次函数(是常数,)的自变量与函数值的部分对应值如下表:…012………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0 B.1 C.2 D.37.两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是()A.是表示甲离地的距离与时间关系的图象B.乙的速度是C.两人相遇时间在D.当甲到达终点时乙距离终点还有8.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵树种植点的坐标应为()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)9.以为顶点的二次函数是()A. B.C. D.10.如图,四边形中,,,,设的长为,四边形的面积为,则与之间的函数关系式是()A. B. C. D.11.菱形具有而矩形不具有的性质是()A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直12.如图,反比例函数的图象经过点A(2,1),若≤1,则x的范围为()A.≥1 B.≥2 C.<0或≥2 D.<0或0<≤1二、填空题(每题4分,共24分)13.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD中,AD//BC,AD=4,BC=9,点E、F分别在边AB、CD上,且EF是梯形ABCD的“比例中线”,那么=_____.14.方程的解为_____.15.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.16.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.17.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).18.如图,在一个正方形围栏中均为地散步着许多米粒,正方形内有一个圆(正方形的内切圆)一只小鸡在围栏内啄食,则小鸡正在圆内区域啄食的概率为________.三、解答题(共78分)19.(8分)初三(1)班要从2男2女共4名同学中选人做晨会的升旗手.(1)若从这4人中随机选1人,则所选的同学性别为男生的概率是.(2)若从这4人中随机选2人,求这2名同学性别相同的概率.20.(8分)某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).21.(8分)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB).且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线AB上一个动点,点Q是直线CD上一个动点.(1)求线段AB的长度:(2)过动点P作PF⊥OA于F,PE⊥OB于E,点P在移动过程中,线段EF的长度也在改变,请求出线段EF的最小值:(3)在坐标平面内是否存在一点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标:若不存在,请说明理由.22.(10分)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为;c的值为;点A的坐标为;(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标.23.(10分)如图,已知,,,,.(1)求和的大小;(2)求的长24.(10分)如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度.25.(12分)如图,于点是上一点,是以为圆心,为半径的圆.是上的点,连结并延长,交于点,且.(1)求证:是的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若的半径为5,,求线段的长.26.如图,矩形中,,,点为边延长线上的一点,过的中点作交边于,交边的延长线于,,交边于,交边于(1)当时,求的值;(2)猜想与的数量关系,并证明你的猜想
参考答案一、选择题(每题4分,共48分)1、B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】解:将这组数据排序得:﹣2,2,2,4,6,7,处在第3、4位两个数的平均数为(4+2)÷2=3,故选:B.【点睛】考查中位数的意义和求法,找一组数据的中位数需要将这组数据从小到大排列后,处在中间位置的一个数或两个数的平均数即为中位数.2、A【解析】根据垂径定理得到直角三角形,求出的长,连接,得到直角三角形,然后在直角三角形中计算出半径的长.【详解】解:如图所示:连接,则长为半径.∵于点,∴,∵在中,,∴,∴,故答案为A.【点睛】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.3、B【解析】用关于原点的对称点的坐标特征进行判断即可.【详解】点P(-1,2)关于原点的对称点的坐标为(1,-2),故选:B.【点睛】根据两个点关于原点对称时,它们的坐标符号相反.4、A【解析】试题解析:∵ED∥BC,故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.5、D【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.6、C【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-=;∴a、b异号,且b=-a;∵当x=0时y=c=-2∴c∴abc0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴和3是关于的方程的两个根;故②正确;∵b=-a,c=-2∴二次函数解析式:∵当时,与其对应的函数值.∴,∴a;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4;故③错误故选C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.7、C【分析】根据图像获取所需信息,再结合行程问题量间的关系进行解答即可.【详解】解:A.是表示甲离地的距离与时间关系的图象是正确的;B.乙用时3小时,乙的速度,90÷3=,故选项B正确;C.设甲对应的函数解析式为y=ax+b,则有:解得:∴甲对应的函数解析式为y=-45x+90,设乙对应的函数解析式为y=cx+d,则有:解得:即乙对应的函数解析式为y=30x-15则有:解得:x=1.4h,故C选项错误;D.当甲到达终点时乙距离终点还有90-40×1.4=45km,故选项D正确;故答案为C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意、从图像中获取问题需要的条件以及数形结合的思想的应用是解答本题的关键.8、D【分析】根据已知分别求出1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤11时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通过观察得到点的坐标特点,进而求解.【详解】解:由题可知1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤11时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通过以上数据可得,P点的纵坐标5个一组循环,∵2119÷5=413…4,∴当k=2119时,P点的纵坐标是4,横坐标是413+1=414,∴P(414,4),故选:D.【点睛】本题考查点的坐标和探索规律;能够理解题意,通过已知条件探索点的坐标循环规律是解题的关键.9、C【解析】若二次函数的表达式为,则其顶点坐标为(a,b).【详解】解:当顶点为时,二次函数表达式可写成:,故选择C.【点睛】理解二次函数解析式中顶点式的含义.10、C【分析】四边形ABCD图形不规则,根据已知条件,将△ABC绕A点逆时针旋转90°到△ADE的位置,求四边形ABCD的面积问题转化为求梯形ACDE的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积.【详解】作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF1+DF1=CD1,即(3a)1+(4a)1=x1,解得:a=,∴y=S四边形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a1=x1.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.11、D【分析】根据菱形和矩形都是平行四边形,都具备平行四边形性质,再结合菱形及矩形的性质,对各选项进行判断即可.【详解】解:因为菱形和矩形都是平行四边形,都具备平行四边形性质,即对边平行而且相等,对角相等,对角线互相平分.、对边平行且相等是菱形矩形都具有的性质,故此选项错误;、对角相等是菱形矩形都具有的性质,故此选项错误;、对角线互相平分是菱形矩形都具有的性质,故此选项错误;、对角线互相垂直是菱形具有而矩形不具有的性质,故此选项正确;故选:D.【点睛】本题考查了平行四边形、矩形及菱形的性质,属于基础知识考查题,同学们需要掌握常见几种特殊图形的性质及特点.12、C【解析】解:由图像可得,当<0或≥2时,≤1.故选C.二、填空题(每题4分,共24分)13、【分析】先利用比例中线的定义,求出EF的长度,然后由梯形ADFE相似与梯形EFCB,得到,即可得到答案.【详解】解:如图,∵EF是梯形的比例中线,∴,∴,∵AD//BC,∴梯形ADFE相似与梯形EFCB,∴;故答案为:.【点睛】本题考查了相似四边形的性质,以及比例中项的定义,解题的关键是熟练掌握相似四边形的性质和比例中线的性质.14、,【分析】因式分解法即可求解.【详解】解:x(2x-5)=0,,【点睛】本题考查了用提公因式法求解一元二次方程的解,属于简单题,熟悉解题方法是解题关键.15、1【分析】设袋子中的红球有x个,利用红球在总数中所占比例得出与试验比例应该相等求出即可.【详解】解:设袋子中的红球有x个,根据题意,得:=0.7,解得:x=1,经检验:x=1是分式方程的解,∴袋子中红球约有1个,故答案为:1.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意列式求解.16、1.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【详解】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=1.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.17、0.1【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.18、【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可.【详解】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=π()2=,所以“小鸡正在圆圈内”啄食的概率为:故答案为:【点睛】本题考查几何概率,掌握正方形面积公式正确计算是解题关键.三、解答题(共78分)19、(1);(2)P(这2名同学性别相同)=.【分析】(1)用男生人数2除以总人数4即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1);(2)从4人中随机选2人,所有可能出现的结果有:(男1,男2)、(男1,女1)、(男1,女2)、(男2,男1)、(男2,女1)、(男2,女2)、(女1,男1)、(女1,男2)、(女1,女2)、(女2,男1)、(女2,男2)、(女2,女1),共有12种,它们出现的可能性相同,满足“这2名同学性别相同”(记为事件A)的结果有4种,所以P(A)=.20、电动扶梯DA的长为70米.【分析】作DE⊥BC于E,根据矩形的性质得到FC=DE,DF=EC,根据直角三角形的性质求出FC,得到AF的长,根据正弦的定义计算即可.【详解】作DE⊥BC于E,则四边形DECF为矩形,∴FC=DE,DF=EC,在Rt△DBE中,∠DBC=30°,∴DEBD=84,∴FC=DE=84,∴AF=AC﹣FC=154﹣84=70,在Rt△ADF中,∠ADF=45°,∴ADAF=70(米),答:电动扶梯DA的长为70米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21、(1)1;(2);(3)存在,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,可得到A、B两点的坐标,在Rt△AOB中利用勾股定理求出AB即可.(2)证明四边形PEOF是矩形,推出EF=OP,根据垂线段最短解决问题即可.(3)分两种情况进行讨论:①当点P与点B重合时,先求出BM的解析式为y=x+8,设M(x,x+8),再根据BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐标;②当点P与点A重合时,先求出AM的解析式为y=x﹣,设M(x,x﹣),再根据AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐标.【详解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===1.(2)如图,连接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四边形PEOF是矩形,∴EF=OP,根据垂线段最短可知当OP⊥AB时,OP的值最小,此时OP==,∴EF的最小值为.(3)在坐标平面内存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长.∵AC=BC=AB=5,∴以点C、P、Q、M为顶点的正方形的边长为5,且点P与点B或点A重合.分两种情况:①当点P与点B重合时,易求BM的解析式为y=x+8,设M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化简整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②当点P与点A重合时,易求AM的解析式为y=x﹣,设M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化简整理,得x2﹣12x+20=0,解得x1=2,x2=1,∴M3(2,﹣3),M4(1,3);综上所述,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【点睛】本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,正方形的性质,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.22、(1)﹣;﹣1;(﹣1,0);(1)①MD=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).【分析】(1)直线yx﹣1与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣1),即可求解;(1)①MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m),即可求解;②分∠CDM=90、∠MDC=90°、∠MCD=90°三种情况,分别求解即可.【详解】(1)直线yx﹣1与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣1).将点B、C的坐标代入抛物线表达式并解得:b,c=﹣1.故抛物线的表达式为:…①,点A(﹣1,0).故答案为:,﹣1,(﹣1,0);(1)①如图1,过点D作y轴的平行线交BC于点H交x轴于点E.设点D(m,m1m﹣1),点H(m,m﹣1).∵∠MDH+∠MHD=90°,∠OBC+∠BHE=90°,∠MHD=∠EHB,∴∠MDH=∠OBC=α.∵OC=1,OB=4,∴BC=,∴cos∠OBC=,则cos;MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m).∵0,故DM有最大值;②设点M、D的坐标分别为:(s,s﹣1),(m,n),nm1m﹣1;分三种情况讨论:(Ⅰ)当∠CDM=90°时,如图1,过点M作x轴的平行线交过点D与x轴的垂线于点F,交y轴于点E.易证△MEC≌△DFM,∴ME=FD,MF=CE,即s﹣1﹣1=m﹣s,ss﹣1﹣n,解得:s,或s=8(舍去).故点M(,);(Ⅱ)当∠MDC=90°时,如图3,过D作直线DE⊥y轴于E,MF⊥DE于F.同理可得:s,或s=0(舍去).故点M(,);(Ⅲ)当∠MCD=90°时,则直线CD的表达式为:y=﹣1x﹣1…②,解方程组:得:(舍去)或,故点D(﹣1,0),不在线段BC的下方,舍去.综上所述:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度25吨汽车吊车租赁与应急响应服务合同2篇
- 二零二五年度时尚秀场兼职模特专属聘用合同6篇
- 二零二五年度城市广场景观草皮采购与绿化施工合同3篇
- 二零二五年度国际贸易合同违约补偿及损害赔偿范本12篇
- 二零二五年度景观雕塑工程设计居间合同模板2篇
- 二零二五年度工业园区物业服务与园区运营管理合同3篇
- 2025版智能销售团队劳动合同规范范本3篇
- 2025年安置房产权转移登记买卖合同范本2篇
- 二零二五年度房地产公司销售顾问劳动合同规范文本2篇
- 2025年度涵洞施工合同标的详细介绍6篇
- 《ISO56001-2024创新管理体系 - 要求》之26:“9绩效评价-9.3管理评审”解读和应用指导材料(雷泽佳编制-2024)
- 三年级上册乘法竖式计算练习200道及答案
- 组建学校篮球队方案
- 重大事故隐患判定标准培训记录、培训效果评估
- GB/T 36548-2024电化学储能电站接入电网测试规程
- NB-T+31010-2019陆上风电场工程概算定额
- JT-T-617.7-2018危险货物道路运输规则第7部分:运输条件及作业要求
- CTD申报资料撰写模板:模块三之3.2.S.3特性鉴定
- 公司技术秘密保护措施
- 2024年辅警招聘考试试题库及完整答案(全优)
- 2023-2024学年成都市锦江区中考英语二诊试题(含答案)
评论
0/150
提交评论