版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2) B.(4,1) C.(3,1) D.(4,2)2.下列四个数中是负数的是()A.1 B.﹣(﹣1) C.﹣1 D.|﹣1|3.若将二次函数的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为()A. B.C. D.4.若点,,在反比例函数的图像上,则的大小关系是()A. B. C. D.5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为()A.15 B.7.5 C.6 D.36.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1447.电脑福利彩票中有两种方式“22选5”和“29选7”,若选中号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5” B.“29选7” C.一样大 D.不能确定8.在△ABC中,∠C=Rt∠,AC=6,BC=8,则cosB的值是()A. B. C. D.9.一个群里共有个好友,每个好友都分别给群里的其他好友发一条信息,共发信息1980条,则可列方程()A. B. C. D.10.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y111.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是()A.x(x+1)=182 B.0.5x(x+1)=182C.0.5x(x-1)=182D.x(x-1)=18212.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.14.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm1.15.如图,是一个半径为,面积为的扇形纸片,现需要一个半径为的圆形纸片,使两张纸片刚好能组合成圆锥体,则_____.16.如图,直角三角形中,,,,在线段上取一点,作交于点,现将沿折叠,使点落在线段上,对应点记为;的中点的对应点记为.若,则______.17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于_____.18.如图,在ABCD中,点E是AD边上一点,AE:ED=1:2,连接AC、BE交于点F.若S△AEF=1,则S四边形CDEF=_______.三、解答题(共78分)19.(8分)一玩具厂去年生产某种玩具,成本为元/件,出厂价为元/件,年销售量为万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中).用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为________元.求今年这种玩具的每件利润元与之间的函数关系式.设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量.20.(8分)如图,有一座圆弧形拱桥,它的跨度为,拱高为,当洪水泛滥到跨度只有时,就要采取紧急措施,若某次洪水中,拱顶离水面只有,即时,试通过计算说明是否需要采取紧急措施.21.(8分)如图,在平面直角坐标系xOy中,双曲线与直线y=﹣2x+2交于点A(﹣1,a).⑴求k的值;⑵求该双曲线与直线y=﹣2x+2另一个交点B的坐标.22.(10分)如图1,直线y=x与双曲线y=交于A,B两点,根据中心对称性可以得知OA=OB.(1)如图2,直线y=2x+1与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试证明:AC=BD;(2)如图3,直线y=ax+b与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试问:AC=BD还成立吗?(3)如果直线y=x+3与双曲线y=交于A,B两点,与坐标轴交点C,D两点,若DB+DC≤5,求出k的取值范围.23.(10分)某商场一种商品的进价为每件元,售价为每件元.每天可以销售件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件元,求两次下降的百分率;(2)经调查,若该商品每降价元,每天可多销售件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?24.(10分)如图,在中,,是斜边上的中线,以为直径的分别交、于点、,过点作,垂足为.(1)若的半径为,,求的长;(2)求证:与相切.25.(12分)一个小球沿着足够长的光滑斜面向上滚动,它的速度与时间满足一次函数关系,其部分数据如下表:(1)求小球的速度v与时间t的关系.(2)小球在运动过程中,离出发点的距离S与v的关系满足,求S与t的关系式,并求出小球经过多长时间距离出发点32m?(3)求时间为多少时小球离出发点最远,最远距离为多少?26.作图题:⊙O上有三个点A,B,C,∠BAC=70°,请画出要求的角,并标注.(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选A.考点:1.位似变换;2.坐标与图形性质.2、C【解析】大于0的是正数,小于0的是负数,据此进行求解即可.【详解】∵1>0,﹣(﹣1)=1>0,|﹣1|=1>0,∴A,B,D都是正数,∵﹣1<0,∴﹣1是负数.故选:C.【点睛】本题主要考查正数的概念,掌握正数大于0,是解题的关键.3、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.4、C【解析】根据点A、B、C分别在反比例函数上,可解得、、的值,然后通过比较大小即可解答.【详解】解:将A、B、C的横坐标代入反比函数上,得:y1=-6,y2=3,y3=2,所以,;故选C.【点睛】本题考查了反比例函数的计算,熟练掌握是解题的关键.5、B【详解】解:∵∠C=90°,∴AB2=AC2+BC2,而AC=9,BC=12,∴AB==1.又∵AB是Rt△ABC的外接圆的直径,∴其外接圆的半径为7.2.故选B.6、D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.7、A【解析】从22个号码中选1个号码能组成数的个数有22×21×20×19×18=3160080,选出的这1个号码能组成数的个数为1×4×3×2×1=120,这1个号码全部选中的概率为120÷3160080=3.8×10−1;从29个号码中选7个号码能组成数的个数为29×28×27×26×21×24×23=7866331200,这7个号码能组成数的个数为7×6×1×4×3×2×1=1040,这7个号码全部选中的概率为1040÷7866331200=6×10−8,因为3.8×10−1>6×10−8,所以,获一等奖机会大的是22选1.故选A.8、C【分析】利用勾股定理求出AB,根据余弦函数的定义求解即可.【详解】解:如图,在中,,,,,故选:C.【点睛】本题考查解直角三角形,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【分析】每个好友都有一次发给QQ群其他好友消息的机会,即每两个好友之间要互发一次消息;设有x个好友,每人发(x-1)条消息,则发消息共有x(x-1)条,再根据共发信息1980条,列出方程x(x-1)=1980.【详解】解:设有x个好友,依题意,得:x(x-1)=1980.故选:B.【点睛】本题考查了一元二次方程的应用,根据题意设出合适的未知数,再根据等量关系式列出方程是解题的关键.10、A【解析】试题分析:∵反比例函数中,k=-4<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大.∵x1<x2<0<x3,∴0<y1<y2,y3<0,∴y3<y1<y2故选A.考点:反比例函数图象上点的坐标特征.11、D【解析】共送出照片数=共有人数×每人需送出的照片数.根据题意列出的方程是x(x-1)=1.故选D.12、B【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.二、填空题(每题4分,共24分)13、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.14、35π.【解析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm1.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15、【分析】先根据扇形的面积和半径求出扇形的弧长,即圆锥底面圆的周长,再利用圆的周长公式即可求出R.【详解】解:设扇形的弧长为l,半径为r,∵扇形面积,∴,∴,∴.故答案为:.【点睛】本题主要考查圆锥的有关计算,掌握扇形的面积公式是解题的关键.16、3.2【分析】先利用勾股定理求出AC,设,依题意得,故,易证,得到,再在中利用勾股定理解出,又得,列出方程解方程得到x,即可得到AD【详解】在中利用勾股定理求出,设,依题意得,故.由求出,再在中,利用勾股定理求出,然后由得,即,解得,从而.【点睛】本题考查勾股定理与相似三角形,解题关键在于灵活运用两者进行线段替换17、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案为16.18、11【分析】先根据平行四边形的性质易得,根据相似三角形的判定可得△AFE∽△CFB,再根据相似三角形的性质得到△BFC的面积,,进而得到△AFB的面积,即可得△ABC的面积,再根据平行四边形的性质即可得解.【详解】解:∵AE:ED=1:2,∴AE:AD=1:3,∵AD=BC,∴AE:BC=1:3,∵AD∥BC,∴△AFE∽△CFB,∴,∴,∴S△BCF=9,∵,∴S△AFB=3,∴S△ACD=S△ABC=S△BCF+S△AFB=12,∴S四边形CDEF=S△ACD﹣S△AEF=12﹣1=11.故答案为11.【点睛】本题主要考查相似三角形的判定与性质,平行四边形的性质等,解此题的关键在于熟练掌握其知识点.三、解答题(共78分)19、10+7x12+6x【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10×0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12×0.5x)元/件;
(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)-(10+7x),然后整理即可;
(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量,得到w=2(1+x)(2-x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【详解】⑴①10+7x②12+6x⑵y=(12+6x)-(10+7x)y=2-x⑶∵w=2(1+x)(2-x)=-2x2+2x+4∴w=-2(x-0.5)2+4.5∵-2<0,0<x≤11,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【点睛】本题考查了二次函数的应用,解题的关键是根据题意列出方程进行求解.20、不需要采取紧急措施,理由详见解析.【分析】连接OA′,OA.设圆的半径是R,则ON=R−4,OM=R−1.根据垂径定理求得AM的长,在直角三角形AOM中,根据勾股定理求得R的值,在直角三角形A′ON中,根据勾股定理求得A′N的值,再根据垂径定理求得A′B′的长,从而作出判断.【详解】设圆弧所在圆的圆心为,连结,,如图所示设半径为则由垂径定理可知,∵,∴,且在中,由勾股定理可得即,解得∴在中,由勾股定理可得∴∴不需要采取紧急措施.【点睛】此类题综合运用了勾股定理和垂径定理,解题的关键是熟知垂径定理的应用.21、(1);(2)B(2,-2)【分析】(1)将A坐标代入一次函数解析式中求得a的值,再将A坐标代入反比例函数解析式中求得m的值;(2)联立解方程组,即可解答.【详解】⑴把点A(-1,a)代入得把点A(-1,4)代入得:⑵解方程组,解得:,∴B(2,-2).【点睛】此题主要考查了反比例函数与一次函数的交点问题,掌握求两函数图象交点的方法是解答的关键,会解方程(组)是解答的基础.22、(1)见解析;(2)成立,见解析;(3)k≤2【分析】(1)如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.证明四边形ACFE,四边形BDEF都是平行四边形即可解决问题.(2)证明方法类似(1).(3)由题意CD=3,推出BD≤2,求出BD=2时,k的值即可判断.【详解】解:(1)如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE=S△AEF=,∵BF∥x轴,∴S△BEF=S△OBF=,∴S△AEF=S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(2)如图1中,如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE=S△AEF=,∵BF∥x轴,∴S△BEF=S△OBF=,∴S△AEF=S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(3)如图2中,∵直线y=x+3与坐标轴交于C,D,∴C(0,3),D(3,0),∴OC=OD=3,CD=3,∵CD+BD≤5,∴BD≤2,当BD=2时,∵∠CDO=45°,∴B(1,2),此时k=2,观察图象可知,当k≤2时,CD+BD≤5【点睛】本题考查一次函数与反比例函数的解题,关键在于熟记基础知识,结合图形运用性质.23、(1)该商品连续两次下降的百分率为;(2)售价为元时,可获最大利润元【分析】(1)设每次降价的百分率为,为两次降价的百分率,根据题意列出方程求解即可;(2)设每天要想获得S元的利润,则每件商品应降价m元,由销售问题的数量关系建立函数解析式,由二次函数性质求出其解即可.【详解】解:(1)设每次降价的百分率为.(不符合题意,舍去)答:该商品连续两次下降的百分率为;(2)设降价元,利润为元.则,即售价为元时,可获最大利润元【点睛】此题主要考查了一元二次方程和二次函数的应用,解(1)关键是根据题意找到等量关系,解(2)的关键是解决销量与价格变化关系,列出函数解析式,解答即可.24、(1);(2)见解析.【分析】(1)根据直角三角形斜边的中线等于斜边的一半,可求得的长度,再根据勾股定理,可求得的长度.根据圆的直径对应的圆周角为直角,可知,根据等腰三角形的顶角平分线、底边上的中线、底边上的高重合,可求得的长.(2)根据三角形中位线平行于底边,可知,再根据,可知,则可知与相切.【详解】(1)连接、,,.为的斜边的中线,由于直角三角形斜边的中线等于斜边的一半,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业学院船舶动力工程技术(船舶管系专业)人才培养方案
- 唇色调和剂产业运行及前景预测报告
- 升降作业平台市场发展预测和趋势分析
- 扫雪机产业规划专项研究报告
- 婴儿摇铃产品供应链分析
- 冲浪皮划艇产业规划专项研究报告
- 医用诊断试剂产业深度调研及未来发展现状趋势
- 抗疲劳地垫市场发展预测和趋势分析
- 内存扩展模块产业规划专项研究报告
- 催乳剂产业规划专项研究报告
- 装饰装修工程拟投入的主要施工机械设备表
- 婚姻家庭纠纷中的法律风险与防范
- 现代物流技术的应用与创新
- 海南省海口市重点中学2023-2024学年七年级上学期期中数学试卷(含答案)
- 眼角膜炎的治疗药物
- 中国银行交易流水明细清单
- 如何提高数学课堂的教学效率
- 教育舆情报告2023
- 重大事故隐患专项排查检查表
- 学美术的职业生涯规划与管理
- jgj39-2016《托儿所、幼儿园建筑设计规范》(2019年版)
评论
0/150
提交评论