




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.cm B.8cm C.6cm D.4cm2.方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=03.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B. C. D.24.若分式的运算结果为,则在中添加的运算符号为()A.+ B.- C.+或÷ D.-或×5.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼()A.条 B.条 C.条 D.条6.如图,菱形ABCD中,EF⊥AC,垂足为点H,分别交AD、AB及CB的延长线交于点E、M、F,且AE:FB=1:2,则AH:AC的值为()A. B. C. D.7.下列说法正确的是()A.垂直于半径的直线是圆的切线 B.经过三个点一定可以作圆C.圆的切线垂直于圆的半径 D.每个三角形都有一个内切圆8.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值1.5,有最小值﹣2.5 B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2.5 D.有最大值2,无最小值9.下列方程中,为一元二次方程的是()A.2x+1=0; B.3x2-x=10; C.; D..10.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣(t﹣4)2+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3s B.4s C.5s D.6s11.下列关系式中,是反比例函数的是()A.y= B.y= C.xy=﹣ D.=112.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D二、填空题(每题4分,共24分)13.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=__.14.如图,抛物线y=﹣x2+mx+2m2(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_____________.15.如图所示:点A是反比例函数,图像上的点,AB⊥x轴于点B,AC⊥y轴于点C,,则k=______.16.在如图所示的网格中,每个小正方形的边长都为2,若以小正形的顶点为圆心,4为半径作一个扇形围成一个圆锥,则所围成的圆锥的底面圆的半径为___________.17.如图,一辆汽车沿着坡度为的斜坡向下行驶50米,则它距离地面的垂直高度下降了米.18.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.三、解答题(共78分)19.(8分)如图,已知抛物线y=﹣x2+bx+c的图象经过(1,0),(0,3)两点.(1)求b,c的值;(2)写出当y>0时,x的取值范围.20.(8分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.21.(8分)如图,在同一平面直角坐标系中,正比例函数y=2x的图象与反比例函数y=的图象交于A,B两点,过点A作AC⊥x轴,垂足为点C,AC=2,求k的值.22.(10分)如图,是的平分线,点在上,以为直径的交于点,过点作的垂线,垂足为点,交于点.(1)求证:直线是的切线;(2)若的半径为,,求的长.23.(10分)如图:在Rt△ABC中,∠C=90°,∠ABC=30°。延长CB至D,使DB=AB。连接AD.(1)求∠ADB的度数.(2)根据图形,不使用计算器和数学用表,请你求出tan75°的值.24.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大地方便了人们的出行.中国北斗导航已经全球组网,它已经走进了人们的日常生活.如图,某校周末组织学生利用导航到某地(用表示)开展社会实践活动,车辆到达地后,发现地恰好在地的正北方向,且距离地8千米.导航显示车辆应沿北偏东60°方向行驶至地,再沿北偏西45°方向行驶一段距离才能到达地.求两地间的距离(结果精确到0.1千米).(参考数据:)25.(12分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于1.26.如图,已知二次函数y=ax1+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:1.(1)求这个二次函数的表达式;(1)若点M为x轴上一点,求MD+MA的最小值.
参考答案一、选择题(每题4分,共48分)1、B【分析】由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.【详解】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,OC过圆心∴AM=BM,在Rt△AOM中,,∴AB=2AM=2×4=1.故选:B.【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.2、C【解析】试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1.故选C.考点:解一元二次方程-因式分解法.3、A【详解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圆中同弧所对的圆周角,∴∠D=∠C=10°.∵AD为直径,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故选A.4、C【分析】根据分式的运算法则即可求出答案.【详解】解:+=,÷==x,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.5、B【分析】利用样本出现的概率估计整体即可.【详解】设湖里有鱼x条根据题意有解得,经检验,x=800是所列方程的根且符合实际意义,故选B【点睛】本题主要考查用样本估计整体,找到等量关系是解题的关键.6、B【分析】连接BD,如图,利用菱形的性质得AC⊥BD,AD=BC,AD∥BC,再证明EF∥BD,接着判断四边形BDEF为平行四边形得到DE=BF,设AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后证明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性质得到AH:AC的值.【详解】解:连接BD,如图,∵四边形ABCD为菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF,由AE:FB=1:2,设AE=x,FB=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知菱形的性质及相似三角形的性质.7、D【分析】根据与圆有关的基本概念依次分析各项即可判断.【详解】A.垂直于半径且经过切点的直线是圆的切线,注意要强调“经过切点”,故本选项错误;
B.经过不共线的三点一定可以作圆,注意要强调“不共线”,故本选项错误;C.圆的切线垂直于过切点的半径,注意强调“过切点”,故本选项错误;
D.每个三角形都有一个内切圆,本选项正确,故选D.【点睛】本题考查了有关圆的切线的判定与性质,解答本题的关键是注意与圆有关的基本概念中的一些重要字词,学生往往容易忽视,要重点强调.8、C【详解】由图像可知,当x=1时,y有最大值2;当x=4时,y有最小值-2.5.故选C.9、B【解析】试题解析:A.是一元一次方程,故A错误;
B.是一元二次方程,故B正确;
C.不是整式方程,故C错误;
D.不是一元二次方程,故D错误;
故选B.10、B【分析】根据顶点式就可以直接求出结论;【详解】解:∵﹣1<0,∴当t=4s时,函数有最大值.即礼炮从升空到引爆需要的时间为4s,故选:B.【点睛】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.11、C【解析】反比例函数的一般形式是y=(k≠0).【详解】解:A、当k=0时,该函数不是反比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、由原函数变形得到y=-,符合反比例函数的定义,故本选项正确;D、只有一个变量,它不是函数关系式,故本选项错误.故选C.【点睛】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是y=(k≠0).12、B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(每题4分,共24分)13、1【分析】根据白球的概率公式列出方程求解即可.【详解】解:不透明的布袋中的球除颜色不同外,其余均相同,共有(n+4)个球,其中白球4个,根据概率公式知:P(白球)=,解得:n=1,故答案为:1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P.14、【分析】过点O作OH∥AC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案.【详解】解:过点O作OH∥AC交BE于点H,令y=x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中点,∴CD=OD,∵OH∥AC,∴,∴OH=CE,∴,∴,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OH∥AC交BE于点H,此题有一定的难度.15、【分析】根据题意可以先设出点A的坐标,然后根据矩形的面积公式即可求解.【详解】解:设点A的坐标为()∵AB⊥x轴于点B,AC⊥y轴于点C,∴AB=,AC=∴解得又反比例函数经过第二象限,∴.故答案为:.【点睛】本题考查反比例函数系数k的几何意义,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质和数形结合的思想解答.16、【分析】先根据直角三角形边长关系得出,再分别计算此扇形的弧长和侧面积后即可得到结论.【详解】解:如图,,,.,,的长度,设所围成的圆锥的底面圆的半径为,,,故答案为:.【点睛】本题考查了圆锥的计算及弧长的计算的知识,解题的关键是能够从图中了解到扇形的弧长和扇形的半径并利用扇形的有关计算公式进行计算,难度不大.17、25【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】解:设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1.解得x=25,即它距离地面的垂直高度下降了25米.【点睛】此题考查三角函数的应用.关键是熟悉且会灵活应用公式:tanα(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.18、1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.三、解答题(共78分)19、(1)b=-2,c=3;(2)当y>0时,﹣3<x<1.【分析】(1)由题意求得b、c的值;
(2)当y>0时,即图象在第一、二象限的部分,再求出抛物线和x轴的两个交点坐标,即得x的取值范围;【详解】(1)根据题意,将(1,0)、(0,3)代入,得:解得:(2)由(1)知抛物线的解析式为当y=0时,解得:或x=1,则抛物线与x轴的交点为∴当y>0时,﹣3<x<1.【点睛】考查待定系数法求二次函数解析式,抛物线与x轴的交点,二次函数的性质,数形结合是解题的关键.20、(1)m=-1,n=-1;(2)y=-x+【分析】(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.【详解】(1)∵直线与双曲线相交于A(-1,a)、B两点,∴B点横坐标为1,即C(1,0)∵△AOC的面积为1,∴A(-1,1)将A(-1,1)代入,可得m=-1,n=-1;(2)设直线AC的解析式为y=kx+b∵y=kx+b经过点A(-1,1)、C(1,0)∴解得k=-,b=.∴直线AC的解析式为y=-x+.【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.21、k=1【分析】根据题意A的纵坐标为1,把y=1代入y=1x,求得A的坐标,然后根据待定系数法即可求得k的值.【详解】解:∵AC⊥x轴,AC=1,∴A的纵坐标为1,∵正比例函数y=1x的图象经过点A,∴1x=1,解得x=1,∴A(1,1),∵反比例函数y=的图象经过点A,∴k=1×1=1.【点睛】本题考查的知识点是正比例函数以及反比例函数图象上点的坐标,直接待如即可求出答案,比较基础.22、(1)证明见解析;(2)1.【分析】(1)根据角平分线的定义和同圆的半径相等可得,证明,可得结论;(2)在中,设,则,,证明,表示,由平行线分线段成比例定理得:,代入可得结论.【详解】解:(1)连接.∵AG是∠PAQ的平分线,∵半径∴直线BC是的切线.(2)连接DE.∵为的直径,∵,设在中,在与中∵,∴在Rt中,AE=12,∴,即∴∴在Rt△ODB与Rt△ACB中∵,∴,∴,即【点睛】本题考查了三角形与圆相交的问题,掌握角平分线的定义、勾股定理、相似三角形的判定以及平行线分线段成比例是解题的关键.23、(1)∠ADB=15°;(2)【分析】(1)利用等边对等角结合∠ABC是△ADB的外角即可求出∠ADB的度数;(2)根据图形可得∠DAB=75°,设AC=x,根据,求出CD即可;【详解】(1)∵DB=AB∴∠BAD=∠BDA∵∠ABC=30°=∠BAD+∠BDA∴∠ADB=15°(2)设AC=x,在Rt△ABC中,∠ABC=30°,∴∴∴∴【点睛】此题考查了解直角三角形,涉及的知识有:勾股定理,含30度直角三角形的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.24、7.2千米【解析】设千米,过点作,可得,根据,列方程求解即可.【详解】解:设千米,过点作,交于点在中,在中,,∵∴∴答:两地间的距离约为7.2千米.【点睛】本题主要考查解直角三角形应用和特殊三角函数..熟练掌握特殊三角函数值是解决问题的关键.25、(1);(2).【分析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率.【详解】第二次第一次6﹣276(6,6)(6,﹣2)(6,7)﹣2(﹣2,6)(﹣2,﹣2)(﹣2,7)7(7,6)(7,﹣2)(7,7)(1)P(两数相同)=.(2)P(两数和大于1)=.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江广厦建设职业技术大学《安装工程计量与计价》2023-2024学年第二学期期末试卷
- 江苏航空职业技术学院《混凝土结构基本原理及设计》2023-2024学年第二学期期末试卷
- 连云港职业技术学院《统计学(Ⅰ)》2023-2024学年第二学期期末试卷
- 特种作业高压电工作业题库练习卷含答案(一)
- 杭州市2023反射疗法师大赛复习题复习试题(一)
- 毕业自我鉴定50字左右
- 《品牌管理学》课件 第2章 品牌管理组织与管理过程
- 2 3函数的奇偶性 周期性和对称性(十年高考数学)含答案
- 2025年健康管理服务平台商业计划书:互联网+医疗健康产业融合发展报告
- 2025年互联网医疗平台在线问诊质量控制与医患沟通技巧培训报告
- 【课件】草原上的小木屋
- DB63-T 241-2021草地毒害草综合治理技术规范
- 高层建筑施工基坑工程勘察及支护结构选型培训
- 四年级上册音乐课件-活动 欢腾的那达慕 人教版(简谱) (共17张PPT)
- 四年级下册综合实践活动教案-我的时间我做主 全国通用
- 预拌混凝土及原材料检测理论考试题库(含答案)
- 3~6岁儿童早期运动游戏干预课程设计研究-基于SKIP的研究证据
- 《植物生理学》课件第三章+植物的光合作用
- 游泳馆网架翻新施工组织方案设计
- 3.1 定格青春——向艺术家学创作 课件-2021-2022学年高中美术人美版(2019)选修绘画
- 有机化学所有的命名--超全.
评论
0/150
提交评论