湖北省潜江市积玉口镇中学2022-2023学年数学九年级第一学期期末经典试题含解析_第1页
湖北省潜江市积玉口镇中学2022-2023学年数学九年级第一学期期末经典试题含解析_第2页
湖北省潜江市积玉口镇中学2022-2023学年数学九年级第一学期期末经典试题含解析_第3页
湖北省潜江市积玉口镇中学2022-2023学年数学九年级第一学期期末经典试题含解析_第4页
湖北省潜江市积玉口镇中学2022-2023学年数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.一元二次方程的二次项系数、一次项系数分别是A.3, B.3,1 C.,1 D.3,62.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.3.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“”的概率相同的是()A.抽到“大王” B.抽到“2” C.抽到“小王” D.抽到“红桃”4.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,在△ABC中,∠BOC=140°,I是内心,O是外心,则∠BIC等于()A.130° B.125° C.120° D.115°6.一个菱形的边长是方程的一个根,其中一条对角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或807.若方程x2+3x+c=0没有实数根,则c的取值范围是()A.c< B.c< C.c> D.c>8.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得()个馒头A.25 B.72 C.75 D.909.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正确结论的序号是()A.①② B.①③ C.②③ D.②④10.如图,A,B是反比例函数y=图象上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形ABCD=9,则k值为()A.8 B.10 C.12 D.1.二、填空题(每小题3分,共24分)11.某学校的初三(1)班,有男生20人,女生23人.现随机抽一名学生,则:抽到一名男生的概率是_____.12.如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把△CDB绕点C旋转90°,点D的对应点为点D′,则OD′的长为_________.13.已知点,在函数的图象上,则的大小关系是________14.若是关于x的一元二次方程的解,则代数式的值是________.15.如图,在平面直角坐标系中,点A是函数图象上的点,AB⊥x轴,垂足为B,若△ABO的面积为3,则的值为__.16.已知关于的方程有两个不相等的实数根,则的取值范围是________.17.一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共______人.18.若x=是一元二次方程的一个根,则n的值为____.三、解答题(共66分)19.(10分)已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.20.(6分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于点A(m,1)与点B(﹣1,﹣4).(1)求反比例函数与一次函数的解析式;(2)根据图象说明,当x为何值时,k1x+b﹣<0;(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求点P的坐标.21.(6分)如图,点P是上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.下面是小元的探究过程,请补充完整:(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:AP/cm01.002.003.004.005.006.00PC/cm01.212.092.69m2.820AC/cm00.871.572.202.833.616.00①经测量m的值是(保留一位小数).②在AP,PC,AC的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为cm(保留一位小数).22.(8分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E,(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)23.(8分)从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.24.(8分)已知关于x的方程x2-6x+k=0的两根分别是x1、x2.(1)求k的取值范围;(2)当+=3时,求k的值.25.(10分)如果是关于x的一元二次方程;(1)求m的值;(2)判断此一元二次方程的根的情况,如果有实数根则求出根,如果没有说明理由则可.26.(10分)解方程:(1);(2).

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据一元二次方程的定义解答.【详解】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故答案选A.【点睛】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.2、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【详解】解:过点B作BC垂直OA于C,

∵点A的坐标是(2,0)

,AO=4,

∵△ABO是等边三角形∴OC=

2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【点睛】本题考查的是利用等边三角形的性质来确定反比例函数的k值.3、B【分析】根据扑克牌的张数,利用概率=频数除以总数即可解题.【详解】解:扑克牌一共有54张,所以抽到“”的概率是,A.抽到“大王”的概率是,B.抽到“2”的概率是,C.抽到“小王”的概率是,D.抽到“红桃”的概率是,故选B.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.4、C【解析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【详解】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误。C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C【点睛】此题考查轴对称图形和中心对称图形,难度不大5、B【分析】根据圆周角定理求出∠BOC=2∠A,求出∠A度数,根据三角形内角和定理求出∠ABC+∠ACB,根据三角形的内心得出∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度数,再求出答案即可.【详解】∵在△ABC中,∠BOC=140°,O是外心,∴∠BOC=2∠A,∴∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵I为△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB==55°,∴∠BIC=180°﹣(∠IBC+∠ICB)=125°,故选:B.【点睛】此题主要考查三角形内心和外心以及圆周角定理的性质,熟练掌握,即可解题.6、B【解析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的对角线互相垂直平分和三角形三边的关系得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线为6,然后计算菱形的面积.【详解】解:,所以,,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为,∴菱形的面积.故选:B.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.也考查了三角形三边的关系和菱形的性质.7、D【分析】根据方程没有实数根,则解得即可.【详解】由题意可知:△==9﹣4c<0,∴c>,故选:D.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.8、C【分析】设有x个大和尚,则有(100-x)个小和尚,根据馒头数=3×大和尚人数+×小和尚人数结合共分100个馒头,即可得出关于x的一元一次方程,解之即可得出结论;【详解】解:设有x个大和尚,则有(100−x)个小和尚,依题意,得:3x+(100−x)=100,解得:x=25,∴3x=75;故选:C.【点睛】本题主要考查了一元一次方程的应用,掌握一元一次方程的应用是解题的关键.9、D【分析】①根据抛物线开口方向即可判断;②根据对称轴在y轴右侧即可判断b的取值范围;③根据抛物线与x轴的交点坐标与对称轴即可判断;④根据抛物线与x轴的交点坐标及对称轴可得AD=BD,再根据CE∥AB,即可得结论.【详解】①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,所以当x=2时,y>0,即1a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD.∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正确.综上:②④正确.故选:D.【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.10、B【分析】分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,根据反比例函数图象上点的坐标特征得到k=OD•t=t•5t,则OD=5t,所以B点坐标为(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四边形ABCD=S△ECD﹣S△EAB得到•5t•5t﹣•4t•4t=9,解得t2=2,然后根据k=t•5t进行计算.【详解】解:分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,∵A,B是反比例函数y=图象上两点,∴k=OD•t=t•5t,∴OD=5t,∴B点坐标为(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四边形ABCD=S△ECD﹣S△EAB,∴•5t•5t﹣•4t•4t=9,∴t2=2,∴k=t•5t=5t2=5×2=2.故选:B.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题(每小题3分,共24分)11、【分析】随机抽取一名学生总共有20+23=43种情况,其中是男生的有20种情况.利用概率公式进行求解即可.【详解】解:一共有20+23=43人,即共有43种情况,∴抽到一名男生的概率是.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.12、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【详解】解:因为点D(4,1)在边AB上,

所以AB=BC=4,BD=4-1=3;

(1)若把△CDB顺时针旋转90°,

则点D′在x轴上,OD′=BD=3,

所以D′(3,0);∴;

(2)若把△CDB逆时针旋转90°,

则点D′到x轴的距离为8,到y轴的距离为3,

所以D′(3,8),∴;

故答案为:3或.【点睛】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.13、【分析】把横坐标分别代入关系式求出纵坐标,再比较大小即可.【详解】∵A(3,y1),B(5,y2)在函数的图象上,∴,,∴y1>y2.【点睛】本题考查反比例函数,掌握反比例函数图象上点的坐标特征是解题的关键.14、1【分析】把x=2代入已知方程求得2a+b的值,然后将其整体代入所求的代数式并求值即可.【详解】解:∵关于x的一元二次方程的解是x=2,∴4a+2b-8=0,则2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=1.故答案是:1.【点睛】本题考查了一元二次方程的解定义,以及求代数式的值,解题时,利用了“整体代入”的数学思想.15、-6【解析】根据反比例函数k的几何性质,矩形的性质即可解题.【详解】解:由反比例函数k的几何性质可知,k表示反比例图像上的点与坐标轴围成的矩形的面积,∵△ABO的面积为3,由矩形的性质可知,点A与坐标轴围成的矩形的面积=6,∵图像过第二象限,∴k=-6.【点睛】本题考查了反比例函数k的几何性质,属于简单题,熟悉性质内容是解题关键.16、【详解】根据题意得:△=(﹣2)2-4×m=4-4m>0,解得m<.故答案为m<.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.17、1【解析】每个人都要送给他自己以外的其余人,等量关系为:人数×(人数﹣1)=72,把相关数值代入计算即可.【详解】设这小组有x人.由题意得:x(x﹣1)=72解得:x1=1,x2=﹣8(不合题意,舍去).即这个小组有1人.故答案为:1.【点睛】本题考查了一元二次方程的应用,得到互送贺卡总张数的等量关系是解决本题的关键,注意理解答本题中互送的含义,这不同于直线上点与线段的数量关系.18、.【分析】把代入到一元二次方程中求出的值即可.【详解】解:∵是一元二次方程的一个根,∴,解得:,故答案为:.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值,牢记方程的解满足方程,代入即可是解决此类问题的关键.三、解答题(共66分)19、(1)k<2且k≠0;(2)x1=2+,x2=2﹣.【解析】(1)利用一元二次方程的定义和判别式的意义得到k≠0且△=42﹣4k•2>0,然后求出两不等式的公共部分即可;(2)先确定k的最大整数值得到方程x2﹣4x+2=0,然后利用因式分解法解方程即可.【详解】解:(1)由题意得,b2﹣4ac>0即42﹣4k•2>0k<2,又∵一元二次方程k≠0∴k<2且k≠0;(2)∵k<2且k取最大整数∴k=1,当k=1时,x2﹣4x+2=0解得,x1=2+,x2=2﹣.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了一元二次方程的定义.20、(1)y1=x﹣3;;(2)x<﹣1或0<x<4;(3)点P的坐标为或(1,4)或(2,2)【分析】(1)把B点坐标代入反比例函数解析式可求得k2的值,把点A(m,1)代入求得的反比例函数的解析式求得m,然后利用待定系数法即可求得一次函数的解析式;(2)直接由A、B的坐标根据图象可求得答案;(3)设点P的坐标为,则C(m,m﹣3),由△POC的面积为3,得到△POC的面积,求得m的值,即可求得P点的坐标.【详解】解:(1)将B(﹣1,﹣4)代入得:k2=4∴反比例函数的解析式为,将点A(m,1)代入y2得,解得m=4,∴A(4,1)将A(4,1)、B(﹣1,﹣4)代入一次函数y1=k1x+b得解得k1=1,b=﹣3∴一次函数的解析式为y1=x﹣3;(2)由图象可知:x<﹣1或0<x<4时,k1x+b﹣<0;(3)如图:设点P的坐标为,则C(m,m﹣3)∴,点O到直线PC的距离为m∴△POC的面积=,解得:m=5或﹣2或1或2,又∵m>0∴m=5或1或2,∴点P的坐标为或(1,4)或(2,2).【点睛】本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,三角形面积,熟练掌握待定系数法是解题的关键.21、(1)①3.0;②AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一);(2)见解析;(3)2.3或4.2【分析】(1)①根据题意AC的值分析得出PC的值接近于半径;②由题意AP的长度是自变量,分析函数值即可;(2)利用描点法画出函数图像即可;(3)利用数形结合的思想解决问题即可.【详解】解:(1)①AC=2.83可知PC接近于半径3.0;②AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一)(2)如图(答案不唯一,和(1)问相对应);(3)结合图像根据AP=PC以及AC=PC进行代入分析可得AP为2.3或4.2【点睛】本题考查函数图像的相关性质,利用描点法画出函数图像以及利用数形结合的思想进行分析求解.22、(1)见解析;(2)【分析】(1)连接OD,由BC是⊙O的切线,可得∠ABC=90°,由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线.(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由,即可求得答案.【详解】解:(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°.∵CD=CB,∴∠CBD=∠CDB.∵OB=OD,∴∠OBD=∠ODB.∴∠ODC=∠ABC=90°,即OD⊥CD.∵点D在⊙O上,∴CD为⊙O的切线.(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=.∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴.23、(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)=(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,=(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,=[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论