




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂州市梁子湖区吴都中学2025届数学九上期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为()米.A.25 B. C. D.2.下列各式中,均不为,和成反比例关系的是()A. B. C. D.3.如图,在RtΔABC中∠C=90°,AC=6,BC=8,则sin∠A的值()A. B. C. D.4.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD5.如图,关于抛物线,下列说法错误的是()A.顶点坐标为(1,)B.对称轴是直线x=lC.开口方向向上D.当x>1时,y随x的增大而减小6.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°7.下列是一元二次方程有()①;②;③;④.A. B. C. D.8.下列事件中,是必然事件的是()A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180° D.经过有交通信号灯的路口,遇到红灯9.中,,是边上的高,若,则等于()A. B.或 C. D.或10.九(1)班的教室里正在召开50人的座谈会,其中有3名教师,12名家长,35名学生,当林校长走到教室门口时,听到里面有人在发言,那么发言人是家长的概率为()A. B. C. D.二、填空题(每小题3分,共24分)11.用一根长为31cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm1.12.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.13.一元二次方程的两根为,,则的值为____________.14.如图,在矩形ABCD中,,对角线AC,BD交于点O,点M,N分别为OB,OC的中点,则的面积为____________.15.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.16.如图,矩形中,,点是边上一点,交于点,则长的取值范围是____.17.已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是___.18.函数中,自变量的取值范围是_____.三、解答题(共66分)19.(10分)如图所示,在中,,,,是边的中点,交于点.(1)求的值;(2)求.20.(6分)(1)计算:(2)如图是一个几何体的三视图,根据图示的数据求该几何体的表面积.21.(6分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?22.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(Ⅰ)若花园的面积是252m2,求AB的长;(Ⅱ)当AB的长是多少时,花园面积最大?最大面积是多少?23.(8分)为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍?24.(8分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)25.(10分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.26.(10分)如图,已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式;(2)若点P(4,m)在抛物线上,求△PAB的面积.
参考答案一、选择题(每小题3分,共30分)1、B【详解】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,则,解得即小岛B到公路l的距离为,故选B.2、B【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【详解】解:A.,则,x和y不成比例;B.,即7yx=5,是比值一定,x和y成反比例;C.,x和y不成比例;D.,即y:x=5:8,是比值一定,x和y成正比例.故选B.【点睛】此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.3、B【分析】由勾股定理可求得AB的长度,再根据锐角三角函数的定义式求得sin∠A的值.【详解】∵AC=6,BC=8,∴AB==,∴sin∠A=.故选B.【点睛】本题考查勾股定理和锐角三角函数的综合应用,根据求得的直角三角形的边长利用锐角三角函数的定义求值是解题关键.4、D【解析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形,
故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.5、D【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x>1时,y随x的增大而增大,根据结论即可判断选项.【详解】解:∵抛物线y=(x-1)2-2,A、因为顶点坐标是(1,-2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>1时,y随x的增大而增大,故说法错误.故选D.6、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7、A【解析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式是一元二次方程.然后对每个方程作出准确的判断.【详解】解:①符合一元二次方程的定义,故正确;②方程二次项系数可能为0,故错误;③整理后不含二次项,故错误;④不是整式,故错误,故选:A.【点睛】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,然后作出准确的判断.8、C【解析】事先能肯定它一定会发生的事件称为必然事件,根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、购买一张彩票,中奖,是随机事件,故A不符合题意;
B、射击运动员射击一次,命中靶心,是随机事件,故B不符合题意;
C、任意画一个三角形,其内角和是180°,是必然事件,故C符合题意;
D、经过有交通信号灯的路口,遇到红灯,是随机事件,故D不符合题意;
故选:C.【点睛】本题考查了随机事件、不可能事件,随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.9、B【分析】根据题意画出图形,当△ABC中为锐角三角形或钝角三角形两种情况解答,结合已知条件可以推出△ABD∽△BCD,即可得出∠ABC的度数.【详解】(1)如图,当△ABC中为锐角三角形时,
∵BD⊥AC,∴△ABD∽△BCD,
∵∠A=30°,
∴∠ABD=∠C=60°,∠A=∠CBD=30°,
∴∠ABC=90°.
(2)如图,当△ABC中为钝角三角形时,
∵BD⊥AC,∴△ABD∽△BCD,
∵∠A=30°,
∴∠ABD=∠DCB=60°,∠A=∠DBC=30°,
∴∠ABC=30°.
故选择B.【点睛】本题考查了相似三角形的判定与性质,将三角形分锐角三角形和钝角三角形分别讨论是解题的关键.10、B【解析】根据概率=频数除以总数即可解题.【详解】解:由题可知:发言人是家长的概率==,故选B.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.二、填空题(每小题3分,共24分)11、2.【解析】试题解析:设矩形的一边长是xcm,则邻边的长是(16-x)cm.则矩形的面积S=x(16-x),即S=-x1+16x,当x=-时,S有最大值是:2.考点:二次函数的最值.12、5【解析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=513、2【解析】根据一元二次方程根的意义可得+2=0,根据一元二次方程根与系数的关系可得=2,把相关数值代入所求的代数式即可得.【详解】由题意得:+2=0,=2,∴=-2,=4,∴=-2+4=2,故答案为2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.14、【分析】由矩形的性质可推出△OBC的面积为△ABC面积的一半,然后根据中位线的性质可推出△OMN的面积为△OBC面积的,即可得出答案.【详解】∵四边形ABCD为矩形∴∠ABC=90°,BC=AD=4,O为AC的中点,∴又∵M、N分别为OB、OC的中点∴MN=BC,MN∥BC∴△OMN∽△OBC∴∴故答案为:.【点睛】本题考查了矩形的性质,中位线的判定与性质,相似三角形的判定与性质,解题的关键是熟练掌握相似三角形的面积比等于相似比的平方.15、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【点睛】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.16、【分析】证明,利用相似比列出关于AD,DE,EC,CF的关系式,从而求出长的取值范围.【详解】∵∴∴∵四边形是矩形∴∴∴∴∴∴因为∴故答案为:.【点睛】本题考查了一元二次方程的最值问题,掌握相似三角形的性质以及判定、解一元二次方程得方法是解题的关键.17、m>1【解析】试题分析:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限.∴m﹣1>0,解得m>1.18、【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.三、解答题(共66分)19、(1);(2)【分析】(1)首先证明∠ACE=∠CBD,在△BCD中,根据正切的定义即可求解;
(2)过A作AC的垂线交CE的延长线于P,利用平行线的性质列出比例式即可解决问题.【详解】解:(1)由,,得.在中,,,,得,即.(2)如图,过作的垂线交的延长线于点,则在中,,,,∴,又∵,,∴,∴.【点睛】本题考查了正切与平行线分线段成比例,熟练掌握正切的定义,作辅助线构造平行是解题的关键.20、(1)2;(2)90π【分析】(1)分别利用零次幂、乘方、负整数指数幂、特殊角的三角函数计算各项,最后作加减法;(2)根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【详解】解:(1)原式=1+(-1)+3-1=2;(2)由三视图可知:圆锥的高为12,底面圆的直径为10,
∴圆锥的母线为:13,
∴根据圆锥的侧面积公式:πrl=π×5×13=65π,
底面圆的面积为:πr2=25π,
∴该几何体的表面积为90π.
故答案为:90π.【点睛】本题主要考查了实数的混合运算和圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.21、(1)y=−0.5x+160(120≤x≤180)(2)销售单价为180元时,销售利润最大,最大利润是7000元【分析】(1)首先由表格可知:销售单价每涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.【详解】(1)∵由表格可知:销售单价每涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100−0.5(x−120)=−0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x−80)(−0.5x+160)=−x2+200x−12800=−(x−200)2+7200,∵a=−<0,∴当x<200时,w随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w=−(180−200)2+7200=7000(元),答:当销售单价为180元时,销售利润最大,最大利润是7000元.【点睛】此题考查了二次函数与一次函数的应用.注意理解题意,找到等量关系是关键.22、(Ⅰ)13m或19m;(Ⅱ)当AB=16时,S最大,最大值为:1.【分析】(Ⅰ)根据题意得出长×宽=252列出方程,进一步解方程得出答案即可;(Ⅱ)设花园的面积为S,根据矩形的面积公式得到S=x(28-x)=-+28x=–+196,于是得到结果.【详解】解:(Ⅰ)∵AB=xm,则BC=(32﹣x)m,∴x(32﹣x)=252,解得:x1=13,x2=19,答:x的值为13m或19m;(Ⅱ)设花园的面积为S,由题意得:S=x(32﹣x)=﹣x2+32x=﹣(x﹣16)2+1,∵a=﹣1<0,∴当x=16时,S最大,最大值为:1.【点睛】本题主要考查二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.23、(1)购买一副乒乓球拍28元,一副羽毛球拍60元;(2)这所中学最多可购买20副羽毛球拍.【分析】(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由购买2副乒乓球拍和1副羽毛球拍共需116元,购买3副乒乓球拍和2副羽毛球拍共需204元,可得出方程组,解出即可.(2)设可购买a副羽毛球拍,则购买乒乓球拍(30﹣a)副,根据购买足球和篮球的总费用不超过1480元建立不等式,求出其解即可.【详解】(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,,解得:.答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)设可购买a副羽毛球拍,则购买乒乓球拍(30﹣a)副,由题意得,60a+28(30﹣a)≤1480,解得:a≤20,答:这所中学最多可购买20副羽毛球拍.考点:一元一次不等式的应用;二元一次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南昌航空大学《土力学含实验》2023-2024学年第二学期期末试卷
- 吕梁学院《软笔书法》2023-2024学年第二学期期末试卷
- 牡丹江师范学院《算法设计与分析Ⅲ》2023-2024学年第二学期期末试卷
- 南阳理工学院《IntroductiontoMicroprocessors》2023-2024学年第二学期期末试卷
- 上海工艺美术职业学院《医学分子生物学实验技术》2023-2024学年第一学期期末试卷
- 南充科技职业学院《生态学原理》2023-2024学年第二学期期末试卷
- 天津理工大学中环信息学院《中学化学教学方法与理论》2023-2024学年第二学期期末试卷
- 二零二五范文公园游乐场地租赁合同
- 护坡承包合同书范例
- 二零二五工程停工补偿协议
- 黑臭水体监测投标方案(技术方案)
- 2023年高考生物全国通用易错题13致死类的遗传题(解析版)
- 四百字作文格子稿纸(可打印编辑)
- 变更被告申请书模板
- 中建项目装饰装修工程施工方案
- 慢性炎性脱髓鞘性多发性神经根神经病诊治中国专家共识2022
- 消防维保质量保证体系
- 《光》 单元作业设计
- 财建2016504号-基本建设项目建设成本管理规定-含附件
- 心内科进修工作汇报
- GB/T 18323-2022滑动轴承烧结轴套尺寸和公差
评论
0/150
提交评论