版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
章末归纳整合【知识构建】专题一向量法用向量法来处理立体几何问题,体现了“数”与“形”的结合,淡化了传统立体几何教材中的“形”到“形”的推理方法,从而降低了思维难度,使问题变得简单化,这是用向量法解立体几何题的独到之处.【思想方法专题】用向量法解决的问题有:(1)利用两个向量共线的条件和共面向量定理,可以证明有关平行、共面的问题;(2)利用两个向量垂直的充要条件可以证明和计算与垂直有关的问题;(3)利用两个非零向量的夹角公式可以求解有关空间角的问题;(4)利用向量的模及向量在单位向量上的射影可以求解有关空间距离的问题.专题二参数法在解决立体几何问题时,判断线面、面面的位置关系,求线面角、二面角及空间距离时经常需要求平面的法向量,当平面的法向量不明显时,需要设出平面的法向量n=(x,y,z),然后利用向量n与平面的垂直关系列出方程组求出向量n.专题二参数法在解决立体几何问题时,判断线面、面面的位置关系,求线面角、二面角及空间距离时经常需要求平面的法向量,当平面的法向量不明显时,需要设出平面的法向量n=(x,y,z),然后利用向量n与平面的垂直关系列出方程组求出向量n.【方法点评】本题若用纯立体几何的方法求解,则会遇到繁琐的几何证明以及作图,故创造建系的环境转化成空间向量,以坐标计算来代替几何证明和作图.要用向量法求点A到平面VBC的距离,须要先用设参数的方法求出平面VBC的一个法向量,同样,要求二面角AVBC余弦值的大小,也须先用参数法求出平面VAB的一个法向量.注意一个平面的法向量有无数个,我们只要取其中的一个即可.变式训练2如图,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)求证:EF∥B1C;(2)求二面角EA1DB1的余弦值.(1)【证明】∵A1B1∥CD且A1B1=CD,∴四边形A1B1CD为平行四边形.∴B1C∥A1D.又B1C⊄平面A1EFD,∴B1C∥平面A1EFD.∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C.专题三求二面角的大小用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.【例3】如图,在三棱锥PABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(1)求证:PC⊥AB;(2)求二面角BAPC的正弦值.(1)证明:∵AC=BC,AP=BP,CP=CP,∴△APC≌△BPC.又PC⊥AC,∴PC⊥BC.∵AC∩BC=C,∴PC⊥平面ABC.∵AB⊂平面ABC,∴PC⊥AB.【方法点评】求二面角的大小,可以作出垂直于棱的两个向量,转化为这两个向量的夹角,但应注意,两向量的始点应在二面角的棱上.专题四用空间向量证明平行与垂直问题(1)证明线面平行问题可以有以下三种方法:①利用线∥线⇒线∥面.②向量p与两个不共线的向量a,b共面的充要条件是存在实数对x,y,使p=xa+yb.利用共面向量定理可以证明线面平行问题.③设n为平面α的法向量,a为直线l的方向向量,若l⊄α,要证明l∥α,只须证明a·n=0.(2)证明线面垂直的常用方法有:①设a为直线l的方向向量,n为平面α的法向量,则a=λn(λ为非零实数)⇔a与n共线⇔l⊥α.②l是直线a,b所在平面α外的直线,a,b相交,l,a,b分别为直线l,a,b的方向向量,则有l·a=0且l·b=0⇔l⊥a且l⊥b⇔l⊥α.【例4】如图,四棱锥PABCD的底面ABCD是直角梯形,PA⊥平面ABCD,AD∥BC,AD⊥DC,△ADC和△ABC均为等腰直角三角形,PA=AD=DC=a,点E为侧棱PB上一点且BE=2EP.求证:(1)平面PCD⊥平面PAD;(2)直线PD∥平面EAC.【方法点评】在建立空间直角坐标系求点的坐标时,要让尽可能多的点落在坐标轴上,尽可能多的线段平行于坐标轴,有直角的,把直角边放在坐标轴上.空间向量与立体几何是高考考查的重要知识点之一,每年都有一道解答题.可以借助空间向量判断空间中的位置关系、求空间角和空间距离等.【解读高考】【答案】C
2.(2019年新课标Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)求证:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角BCGA的大小.3.(2019年天津)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角EBDF的余弦值为,求线段CF的长.Thebestclassroomintheworldisatthefeetofanelderlyperson.世界上最好的课堂在老人的脚下.Havingachildfallasleepinyourarmsisoneofthemostpeacefulfeelingintheworld.让一个孩子在你的臂弯入睡,你会体会到世间最安宁的感觉.Beingkindismoreimportantthanbeingright.善良比真理更重要.Youshouldneversaynotoagiftfromachild.永远不要拒绝孩子送给你的礼物.Sometimesallapersonneedsisahandtoholdandahearttounderstand.有时候,一个人想要的只是一只可握的手和一颗感知的心.Love,nottime,healsallwounds.治愈一切创伤的并非时间,而是爱.Lifeistough,butI'mtougher.生活是艰苦的,但我应更坚强.励志名言请您欣赏3.(2019年天
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高温天气防中暑应急预案
- 部编乌鸦喝水教学反思6篇
- 三毛语录句子
- 2024年实木类家具项目资金筹措计划书代可行性研究报告
- 2024年外墙涂料项目资金需求报告代可行性研究报告
- 素食的好处英语课件
- 【语文课件】安塞腰鼓课件
- 八年级八下23课教育课件
- 《生命体征监测技术》课件
- 5年级下册英语课件下载
- 2024污水处理厂运营合同书(范本)
- 2024-2030年中国农业卫星数据服务行业发展战略与投资规划分析报告
- 江苏省南京市鼓楼区2024-2025学年七年级上学期期中数学试卷(含答案解析)
- 银行办公大楼物业服务投标方案投标文件(技术方案)
- 网络信息安全管理作业指导书
- (一模)宁波市2024学年第一学期高考模拟考试 化学试卷(含答案)
- GB/T 44481-2024建筑消防设施检测技术规范
- 2024年炉外精炼工(初级)职业技能鉴定考试题库(含答案)
- 人教版七年级生物上册第二单元第二章第二节脊椎动物二两栖动物和爬行动物课件
- 中国医学科学院肿瘤医院医用直线加速器维保项目招标文件
- 2024年度陕西省安全员之A证(企业负责人)能力提升试卷A卷附答案
评论
0/150
提交评论