2022-2023学年青海省海南州数学八年级第一学期期末复习检测试题含解析_第1页
2022-2023学年青海省海南州数学八年级第一学期期末复习检测试题含解析_第2页
2022-2023学年青海省海南州数学八年级第一学期期末复习检测试题含解析_第3页
2022-2023学年青海省海南州数学八年级第一学期期末复习检测试题含解析_第4页
2022-2023学年青海省海南州数学八年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列计算正确的是().A. B.=1C. D.2.某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道米,则可列方程,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为()A.每天比原计划多铺设10米,结果延期10天完成任务B.每天比原计划少铺设10米,结果延期10天完成任务C.每天比原计划少铺设10米,结果提前10天完成任务D.每天比原计划多铺设10米,结果提前10天完成任务3.如图,在中,,,以点为圆心,小于的长为半径作弧,分别交,于两点;再分别以点为圆心,大于长为半径作弧,两弧交于点,作射线交于点.若的面积为9,则的面积为()A.3 B. C.6 D.4.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an5.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.两处 C.三处 D.四处6.已知直线y=-2x+3和直线y=kx-5平行,则k的值为()A.2 B.-2 C.3 D.无法确定7.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为()尺码373839404142人数344711A.4和7 B.40和7 C.39和40 D.39.1和398.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则图中∠的度数是()A.75° B.65° C.55° D.45°9.已知点与关于轴对称,则的值为()A.1 B. C.2019 D.10.下列运算正确的是()A.a2⋅a3=a6 B.(a2)3=a6 C.(﹣ab2)6=a6b6 D.(a+b)2=a2+b211.如图,把矩形沿折叠,使点落在点处,点落在点处,若,且,则线段的长为()A.1 B.2 C.3 D.412.对于一次函数,下列说法正确的是()A.它的图象经过点 B.它的图象与直线平行C.随的增大而增大 D.当时,随的增大而减小二、填空题(每题4分,共24分)13.已知一个角的补角是它余角的3倍,则这个角的度数为_____.14.若分式的值为0,则x=________.15.已知x+y=1,则x²xyy²=_______16.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=_____°.17.平面直角坐标系中,点到原点的距离是_____.18.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.三、解答题(共78分)19.(8分)先化简,再求值:,其中.20.(8分)计算:(1)(﹣m﹣2)•(2)(﹣)2÷(﹣)21.(8分)已知在平面直角坐标系中的位置如图所示,将向右平移5个单位长度,再向下平移3个单位长度得到.(图中每个小方格边长均为1个单位长度)(1)在图中画出平移后的;(2)直接写出各顶点的坐标______,______,______.(3)在轴上找到一点,当取最小值时,点的坐标是______.22.(10分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A在x轴上,AB=AC,∠BAC=90°,且A(2,0)、B(3,3),BC交y轴于M,(1)求点C的坐标;(2)连接AM,求△AMB的面积;(3)在x轴上有一动点P,当PB+PM的值最小时,求此时P的坐标.23.(10分)因式分解:a3﹣2a2b+ab224.(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.25.(12分)王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合.(1)求证:;(2)求两堵木墙之间的距离.26.知识背景我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题问题初探如图(1),△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连接AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连接BE,猜想BE和CD有怎样的数量关系,并说明理由.类比再探如图(2),△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连接BE,则∠EBD=.(直接写出答案,不写过程,但要求作出辅助线)方法迁移如图(3),△ABC是等边三角形,点D是BC上一点,连接AD,以AD为一边作等边三角形ADE,连接BE,则BD、BE、BC之间有怎样的数量关系?(直接写出答案,不写过程).拓展创新如图(4),△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作等边三角形MDE,连接BE.猜想∠EBD的度数,并说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】先把各二次根式化为最简二次根式,再合并同类二次根式,或者根据乘法公式进行计算.【详解】A选项:,本选项错误;B选项:,本选项错误;C选项:,本选项错误;D选项:,本选项正确.故选D.【点睛】本题考查了二次根式的混合运算,关键要先把各二次根式化为最简二次根式.2、D【分析】工作时间=工作总量÷工作效率.那么表示原来的工作时间,那么就表示现在的工作时间,10就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道米,那么就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间−实际用的时间=10天,那么就说明每天比原计划多铺设10米,结果提前10天完成任务.

故选:D.【点睛】本题主要考查的是分式方程的实际应用,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.3、A【分析】根据作图方法可知是的角平分线,得到,已知,由等角对等边,所以可以代换得到是等腰三角形,由30度角所对的直角边是斜边的一半、三角形的面积公式,可知两个三角形等高,用底边之间的关系式来表示两个三角形的面积的关系,即可求出结果.【详解】,,,根据作图方法可知,是的角平分线,,,点在的中垂线上,在,,,,又,,,故选:A【点睛】根据作图的方法结合题目条件,可知是的角平分线,由等角对等边,所以是等腰三角形,由于所求三角形和已知三角形同高,底满足,所以三角形面积是三角形的,可求得答案.4、B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B、把多项式10x2﹣5x变形为5x与2x﹣1的积,是因式分解;C、变形的结果不是几个整式的积,不是因式分解;D、变形的结果不是几个整式的积,不是因式分解;故选:B.【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.5、D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.6、B【分析】根据两直线平行,k相等即可得出答案.【详解】∵直线y=-2x+3和直线y=kx-5平行故选:B.【点睛】本题主要考查两直线平行,掌握两直线平行时,k相等是解题的关键.7、C【分析】根据众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.【详解】解:观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,即39;故选:C.【点睛】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是数据中出现最多的一个数.8、A【分析】根据三角形的内角和定理、对顶角相等和三角形外角的性质即可得出结论.【详解】解:如下图所示∠1=180°-90°-45°=45°∴∠2=∠1=45°∴∠=∠2+30°=75°故选A.【点睛】此题考查的是三角形的内角和定理、三角形外角的性质和对顶角的性质,掌握三角形的内角和定理、三角形外角的性质和对顶角相等是解决此题的关键.9、B【分析】根据关于x轴对称的点的坐标规律可求出m、n的值,代入即可得答案.【详解】∵点与关于x轴对称,∴m-1=2m-4,n+2=-2,解得:m=3,n=-4,∴=(3-4)2019=-1.故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;掌握好对称点的坐标规律是解题关键.10、B【分析】同底数幂的乘法,底数不变,指数相加;幂的乘方,底数不变,指数相乘.【详解】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、积的乘方等于各因数分别乘方的积,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:B.【点睛】掌握幂的运算为本题的关键.11、B【分析】由平行线的性质和对折的性质证明△AEF是等边三角形,在直角三角形ABF中,求得∠BAF=,从而求得AF=1BF=1,进而得到EF=1.【详解】∵矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,∴∠B=90,∠EFC=∠AFE,ADBC,又∵∠AFE=60,∴∠AEF=∠AFE=60,∴△AEF是等边三角形,∴∠EAF=60,EF=AF,又∵ADBC,∴∠AFB=60,又∵∠B=90,BF=1,∴AF=1BF=1,又∵EF=AF,∴EF=1.故选:B.【点睛】考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.12、D【分析】根据一次函数图象上点的坐标特征、一次函数的性质判断即可.【详解】A、当时,,

∴点(1,-2)不在一次函数的图象上,A不符合题意;

B、∵,它的图象与直线不平行,B不符合题意;

C、∵<0,

∴y随x的增大而减小,C不符合题意;

D、∵<0,

∴y随x的增大而减小,D符合题意.

故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及一次函数图象与系数的关系,逐一分析四个选项的正误是解题的关键.二、填空题(每题4分,共24分)13、45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.14、-1【分析】根据分式有意义的条件列方程组解答即可.【详解】解:有题意得:解得x=-1.故答案为x=-1.【点睛】本题考查了分式等于0的条件,牢记分式等于0的条件为分子为0、分母不为0是解答本题的关键.15、【分析】根据完全平方公式即可得出答案.【详解】∵x+y=1∴∴【点睛】本题考查的是完全平方公式:.16、45【解析】解:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°.17、【分析】作轴于,则,,再根据勾股定理求解.【详解】作轴于,则,.则根据勾股定理,得.故答案为.【点睛】此题考查了点的坐标的知识以及勾股定理的运用.点到x轴的距离即为点的纵坐标的绝对值.18、(,).【解析】解:作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M是ON的中点,∴OM=1.5,∴PM=,∴P(,).故答案为:(,).点睛:本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.三、解答题(共78分)19、;2【分析】先约分化简,再计算括号,最后代入化简即可.【详解】解:原式===将x=3代入,原式=2.【点睛】本题考查分式的混合运算、乘法公式等知识,解题的关键是灵活掌握分式的混合运算法则,注意简便运算,属于中考常考题型.20、(1)6+2m;(2)【分析】(1)首先通分计算括号里面的减法,再计算乘法即可;(2)首先通分计算括号里面的减法,再计算除法即可.【详解】(1)原式;(2)原式.【点睛】本题考查了分式的减法、乘除法,熟记各运算法则是解题关键.21、(1)见解析;(2),,;(3)【分析】(1)利用点平移的坐标变换规律确定A1、B1、C1的位置,然后用线段顺次连接即可;(2)根据(1)中得到的图形写出A1、B1、C1的坐标即可;(3)作A点关于x轴的对称点A′,连接A′A1交x轴于M,如图,从而得到M点的坐标.【详解】.解:(1)如图,为所作;(2),,;(3)作点关于轴的对称点,连接交轴于,如图,点的坐标为.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.本题也考查了轴对称-最短距离问题.22、(1)C的坐标是(﹣1,1);(2);(3)点P的坐标为(1,0).【分析】(1)作CD⊥x轴于D,BE⊥x轴于E,证明≌,根据全等三角形的性质得到CD=AE,AD=BE,求出点C的坐标;(2)利用待定系数法求出直线BC的解析式,得到OM的长,根据梯形的面积公式、三角形的面积公式计算,得到答案;(3)根据轴对称的最短路径问题作出点P,求出直线B的解析式,根据x轴上点的坐标特征求出点P的坐标.【详解】解:(1)如图,作CD⊥x轴于D,BE⊥x轴于E,∴∠CAD+∠DCA=90°,∵∠BAC=90°,∴∠CAD+∠BAE=90°,∴∠BAE=∠ACD,在和中,,∴≌(AAS),∴CD=AE,AD=BE,∵A(2,0)、B(3,3),∴OA=2,OE=BE=3,∴CD=AE=1,OD=AD﹣OA=1,∴C的坐标是(﹣1,1);(2)如图,作BE⊥x轴于E,设直线BC的解析式为y=kx+b,∵B点的坐标为(3,3),C点的坐标是(﹣1,1),∴,解得,,∴直线BC的解析式为y=x+,当x=0时,y=,∴OM=,∴的面积=梯形MOEB的面积﹣的面积﹣的面积=×(+3)×3﹣×2×﹣×1×3=;(3)如图,作M关于x轴的对称点(0,﹣),连接B,交x轴于点P,此时PB+PM=PB+P=B的值最小,设直线B的解析式为y=mx+n,则,解得,,∴直线B的解析式为y=x﹣,点P在x轴上,当y=0时,x=1,∴点P的坐标为(1,0).【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质、求一次函数解析式和求两线段和的最小值,掌握等腰直角三角形的性质、全等三角形的判定及性质、利用待定系数法求一次函数解析式和轴对称的最短路径问题是解决此题的关键.23、【分析】先提取公因式,再利用完全平方公式继续分解即可.【详解】a3﹣2a2b+ab2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24、,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.试题解析:原式=·=当a=0时,原式==2.考点:分式的化简求值.25、(1)证明见解析;(2)两堵木墙之间的距离为.【分析】(1)根据同角的余角相等可证,然后利用AAS即可证出;(2)根据题意即可求出AD和BE的长,然后根据全等三角形的性质即可求出DC和CE,从而求出DE的长.【详解】(1)证明:由题意得:,,∴,∴,∴在和中,∴;(2)解:由题意得:,∵,∴,∴,答:两堵木墙之间的距离为.【点睛】此题考查的是全等三角形的应用,掌握全等三角形的判定及性质是解决此题的关键.26、问题初探:BE=CD,理由见解析;类比再探:∠EBD=90°,辅助线见解析;方法迁移:BC=BD+BE;拓展创新:∠EBD=120°,理由见解析【分析】问题初探:根据余角的性质可得∠BAE=∠CAD,然后可根据SAS证明△BAE≌△CAD,进而可得结论;类比再探:过点M作MF∥AC交BC于点F,如图(5),可得△BMF是等腰直角三角形,仿问题初探的思路利用SAS证明△BM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论