版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市第一六六中学2023-2024学年中考数学押题卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20B.30和25C.30和22.5D.30和17.52.如图,若AB∥CD,则α、β、γ之间的关系为()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°3.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为()A. B. C. D.4.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.5.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是()A.9.5 B.13.5 C.14.5 D.176.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数 B.方差 C.平均数 D.中位数7.下列因式分解正确的是()A. B.C. D.8.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等 D.第27天的日销售利润是875元9.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是()A.M>N B.M=N C.M<N D.不能确定10.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.12.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.13.因式分解:9a2﹣12a+4=______.14.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.15.不等式组的解集为________.16.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________三、解答题(共8题,共72分)17.(8分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.(1)如图1,当AB=AC,且sin∠BEF=时,求的值;(2)如图2,当tan∠ABC=时,过D作DH⊥AE于H,求的值;(3)如图3,连AD交BC于G,当时,求矩形BCDE的面积18.(8分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.请问1辆大货车和1辆小货车一次可以分别运货多少吨?目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?19.(8分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.20.(8分)计算:.21.(8分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积22.(10分)解不等式组23.(12分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(1)若AB=AE,求证:∠BAD=∠COF;(3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.24.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20+252故选:C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2、C【解析】
过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.3、D【解析】
连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.【详解】解:连接EB,由圆周角定理可知:∠B=90°,设⊙O的半径为r,由垂径定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故选D.【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.4、D【解析】
过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.5、B【解析】
由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周长=(AB+BC+AC)=×(10+8+9)=13.1.故选B.【点睛】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.6、D【解析】
根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.7、C【解析】
依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
选项B,A中的等式不成立;
选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.8、C【解析】试题解析:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,当x=10时,y=-10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,当t=12时,y=150,z=-12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选C9、A【解析】
若比较M,N的大小关系,只需计算M-N的值即可.【详解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故选A.【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况.10、B【解析】
根据三角形的中位线等于第三边的一半进行计算即可.【详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=12故选B.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案为.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12、5【解析】由题意得,,.∴原式13、(3a﹣1)1【解析】
直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.14、-1【解析】试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k的几何意义.15、x>1【解析】
分别求出两个不等式的解集,再求其公共解集.【详解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式组的解集为:x>1,故答案为:x>1.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16、75°【解析】
先根据同旁内角互补,两直线平行得出AC∥DF,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.【详解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案为:75°.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键.三、解答题(共8题,共72分)17、(1);(2)80;(3)100.【解析】
(1)过A作AK⊥BC于K,根据sin∠BEF=得出,设FK=3a,AK=5a,可求得BF=a,故;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.【详解】解:(1)过A作AK⊥BC于K,∵sin∠BEF=,sin∠FAK=,∴,设FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°,∴BK=CK=4a,∴BF=a,又∵CF=7a,∴(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,∵∠AGE=∠DHE=90°,∴△EGA∽△EHD,∴,∴,其中EG=BK,∵BC=10,tan∠ABC=,cos∠ABC=,∴BA=BC·cos∠ABC=,BK=BA·cos∠ABC=∴EG=8,另一方面:ED=BC=10,∴EH·EA=80(3)延长AB、ED交于K,延长AC、ED交于T,∵BC∥KT,,∴,同理:∵FG2=BF·CG∴,∴ED2=KE·DT∴,又∵△KEB∽△CDT,∴,∴KE·DT=BE2,∴BE2=ED2∴BE=ED∴【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.18、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】
(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【详解】(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得:
,
解得:.
答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨.
(2)解:设大货车有m辆,则小货车10-m辆,依题可得:
4m+(10-m)≥33
m≥0
10-m≥0
解得:≤m≤10,
∴m=8,9,10;
∴当大货车8辆时,则小货车2辆;
当大货车9辆时,则小货车1辆;
当大货车10辆时,则小货车0辆;
设运费为W=130m+100(10-m)=30m+1000,
∵k=30〉0,
∴W随x的增大而增大,
∴当m=8时,运费最少,
∴W=130×8+100×2=1240(元),
答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.19、详见解析【解析】
由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.【详解】证明:∵△ABC,△DEB都是等边三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.20、【解析】【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式===.【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.21、(1),N(3,6);(2)y=-x+2,S△OMN=3.【解析】
(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.【详解】解:(1)∵点M是AB边的中点,∴M(6,3).∵反比例函数y=经过点M,∴3=.∴k=1.∴反比例函数的解析式为y=.当y=6时,x=3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN的解析式为y=ax+b,则,解得,∴直线MN的解析式为y=-x+2.∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.【点睛】本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.22、﹣1≤x<1.【解析】
分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,则不等式组的解集为﹣1≤x<1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.23、(1)48°(1)证明见解析(3)【解析】
(1)连接CD,根据圆周角定理和垂直的定义可得结论;
(1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直径,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动物烙印行业营销策略方案
- 人工授精替动物行业市场调研分析报告
- 农业灌溉装置产品供应链分析
- 布料精加工行业经营分析报告
- 入场券产品供应链分析
- 照像取景器产品供应链分析
- 品牌声誉管理行业市场调研分析报告
- 展示桌产品供应链分析
- 无线电收发机产品供应链分析
- 床用暖床器产业链招商引资的调研报告
- 语文研究性学习提出的背景及意义
- 食堂安全考试试题含答案三级安全教育考试
- 毛概演讲(完整版)
- 部编版语文教材九年级上册第二单元整体备课
- 起重装卸机械操作工复习题库及答案
- m301项目整车性能验证策划-签批版1.55mt
- YY 0612-2007一次性使用人体动脉血样采集器(动脉血气针)
- 异丁烷安全标签
- ACS早期识别课件
- 人教统编版二年级语文上册《7 妈妈睡了》教学课件PPT小学公开课
- 键盘的使用教案课件
评论
0/150
提交评论