2024北京顺义区高二(下)期末数学试题及答案_第1页
2024北京顺义区高二(下)期末数学试题及答案_第2页
2024北京顺义区高二(下)期末数学试题及答案_第3页
2024北京顺义区高二(下)期末数学试题及答案_第4页
2024北京顺义区高二(下)期末数学试题及答案_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024北京顺义高二(下)期末数学1.本试卷总分150分,考试时间120分钟.考生须知2.本试卷共5页,分为选择题(40分)和非选择题(110分)两个部分.3.试卷所有答案必须填涂或写在答题卡上,在试卷上作答无效.第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答.4.考试结束后,请将答题卡交回,试卷自己保留.第一部分选择题共分)一、选择题(本题共10小题,每小题4分,共分,在每小题列出的四个选项中,选出符合题目要求的一项.)()=−的零点是fxx1(1)函数(A)e1e1(B)(C)10(D)35的值为(B)(3)下列函数中,在R上为减函数的是(2)C(A)(C)(D)1x2()=()=(A)fxcosx(B)(D)fx()1()=−fxx2()=fx(C)x(4)已知等差数列{푎}前n项和为S,푎+푎=0,푎+푎=8,则S的值为푛푛12346(A)16(B)20(C)24(D)28(5)函数ysin2x的导数为=(A)y2x=(B)y(6)下列函数中,图象不存在与x轴平行的切线的是(A)y=−x−1(B)y=(C)(D)y=cosx=−(C)y=−2cos2x(D)y=2cos2xcos2x3xy=sinx(7)2016年月日,中国的“二十四节气”被正式列入联合国教科文组织人类非物质文化遗产代表作名录.二十四节气不仅是一种时间体系,更是一套具有丰富内涵的生活与民俗系统.《传统廿四节气歌》中的“春雨惊春清谷天,夏满芒夏暑相连;秋处露秋寒霜降,冬雪雪冬小大寒”,每一句诗歌的开头一字代表着季节,每一句诗歌包含了这个季节中的6个节气.某个小组在参加“跟着节气去探究”综合实践活动时,要从个节气中选择个节气,且个节气不在同一个季节,那么不同的选法有22(A)60种(B)种(C)276种(D)432种第1页/共页(8)若奇函数f(x)的定义域为()()()(),0上的图象如图所示,则不等式,fx在,0()()0的解集是fxfx(A)(,)()(B)(1,0))−(C)(,)−)(D)(−1,0)(0,1)(9)碳14是透过宇宙射线撞击空气中的氮14原子所产生.碳14原子经过β衰变转变为氮原子.由于其半衰期达5730年,经常用于考古年代鉴定.半衰期(Half-life)是指放射性元素的原子核有半数发生衰变时所需要的时间.对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为(参考数据:20.3010)(A)40万年(B)20万年(C)4万年(D)2万年(10)对于数列n,若存在M0,使得对任意nN*,有a−a+a−a+−annM,则称2132”a为“有界变差数列.给出以下四个结论:n”0a为“有界变差数列,则a的公差等于;d①若等差数列nn”q的取值范围是()a为“有界变差数列,则其公比②若各项均为正数的等比数列;n1”y=nxy是“有界变差数列”;nx是有界变差数列,y③若数列④若数列满足满足,则,则nn2nnx”y=2n“”xn是有界变差数列,yn是有界变差数列;nnyn其中所有正确结论的个数是(A)1(B)2(C)3(D)4第二部分(非选择题共分)二、填空题(本题共5小题,每小题5分,共分,把答案填在答题卡上.)函数f(x)=−x)−x+3的定义域为.1(12)已知各项均为正数的等比数列{푎},푎=,푎=2,则푎=;푛3572{푎}前n项积푇的最小值为.푛푛第2页/共页(13)已知随机变量X取所有值12是等可能的,且XE=2),则n=___________.(14)顺义石门农副产品批发市场是北京市重要的农产品集散地之一,该市场每天要对进场销售的蔬菜进行无公害检测.来自A,B,C三个产区的土豆在某天的进场数量(单位:吨)如下表:产区ABC进场数量工作人员用分层随机抽样的方法从进场销售的土豆中共抽取个进行了农药残留量检测(忽略土豆的个体大小差异),再从这个土豆中随机抽取个进行重金属残留量检测,则来自产区的土豆被抽到的概率2A为____________.−33xx,x,2x,x.f(x)(15)已知函数f(x)=①当a=0时,函数的最小值是;()fxa无最小值,则实数的取值范围是②若函数.三、解答题共6小题,共85分,解答应写出文字说明,证明过程或演算步骤.(16)(13分)1nx已知的展开式中,各项的系数之和为729.2x+(Ⅰ)求n的值;(Ⅱ)判断展开式中是否存在含x(17)(本小题13分)2的项,若存在,求出该项;若不存在,说明理由.已知各项均为正数的等比数列满足푎=8,푎∙푎=4,设푏=log푎.푛124푛2푛(Ⅰ)证明:数列푛}是等差数列;(Ⅱ)记数列}的前n项和为S,求S的最大值.푛푛푛(18)(14分)已知函数fx)=x+ax2+1.(Ⅰ)求f(x)在点(0,f(0))处的切线方程;3(Ⅱ)当−a0时,求f(x)在区间[0,1]上的最大值.2(19)(本小题15分)某学校有A,B两个学生餐厅.在“厉行节约、反对浪费”主题宣传月活动中,为帮助餐厅把握每日每餐的用餐人数,科学备餐,该校学生会从全校随机抽取了过整理得到如下数据:名学生作为样本,收集他们在某日的就餐信息,经用餐时段早餐用餐地点午餐晚餐第3页/共页A餐厅人人人人人0人人人人B餐厅不在学校用餐用频率估计概率,且学生对餐厅的选择相互独立,每日用餐总人数相对稳定.(Ⅰ)若该学校共有名学生,估计每日在A餐厅用早餐的人数;(Ⅱ)从该学校每日用午餐的学生中随机抽取3人,设X表示这3人中在A餐厅用餐的人数,求X的分布列E(X)和数学期望;(Ⅲ)一个星期后,从在学校每日用晚餐的学生中随机抽查了人,发现在B餐厅用晚餐的有2人.根据抽查结果,能否认为在B餐厅用晚餐的人数较上个星期发生了变化?说明理由.(20)(15分)已知函数f(x)=ax2−ex,设h(x)f(x).=e(Ⅰ)若a=,求h(x)的单调区间;2(Ⅱ)若f(x)在区间(0,+)上存在极小值m,(ⅰ)求a的取值范围;m−a(ⅱ)证明:.(21)(本小题分)若数列A:a,a,2)满足k1−k1(k−=,则称n为E数列.n12记S(n)1a2=++.(Ⅰ)若E数列5满足1=−5=1,直接写出S(A)所能取到的最大值和最小值;5=1,求证:存在k,使得ak=0;(Ⅱ)若E数列n满足n2024,1==−an(Ⅲ)若E数列n(n满足a=a=1,求S(A)所能取到的最大值(结果用含n的代数式表示).n1n第4页/共页参考答案一、选择题ACBCDBBACC二、填空题81−)12.8,13.314.15.-2,)1564三、解答题(16)(本小题分)1nx解:(Ⅰ)2x+的展开式中,各项的系数之和为729,令=,得n=,--------------------------4分--------------------------6分x1解得n=6.16x1rr(Ⅱ)2x+的展开式的通项为Cr6(2x)6−()=26−rCr6x6−2r,--------8分xx2若存在含的项,则6−2r=2--------10分,r=2.解得--------12分x2所以展开式中存在含的项,此项为24C26x2=240x2.--------13分(17)(本小题分)解:(Ⅰ)设等比数列{푎푛}的公比为q,∵数列{푎}是等比数列,且푎>0,푛푛∴푎∙푎=푎2=4,-------------------------------------------------------------------1分2433=2,--------------------------------------------------------------------2分或푎∙푎=푎푞∙푎푞3=푎2∙푞4=)--------------2分∴푎=푎∙q2=2.3124111又∵1=8,1∴q=,-------------------------------------------------------------------------------4分2∴푎=푎∙qn−1=24−n,--------------------------------------------------------5分푛1∴푏=log푎=4−푛,-----------------------------------------------------------------6分푛2푛∴푛+1−푛=[4−(n+1)]−(4−n)----------------------------------------------7分=−1是常数.∴数列{푏}是等差数列,首项푏=3,公差d=−1.-----------------------------8分푛1(Ⅱ)(法一)1+푏푛17∵푛=∙푛=−푛2+푛,-------------------------------------------------10分2227∴对称轴n=,----------------------------------------------------------------------------11分2第5页/共页∴n=3或时,푛最大,最大值为6.---------------------------------------------------------13分(法二)∵푛=4−푛,∴数列푛}是递减数列.-------------------------------------------------------------9分푏=4−푛,可知:当푛<4时,푏>0;푛푛푛=4时,푛=0;当푛>4时,푛<0;-------------------------------------------------------------11分∴SSS=SS.12345∴n=3或时,푛最大.--------------------------------------------12分=+,∵bbbS3213푛的最大值为6.(18)(本小题分)解:(Ⅰ)--------------------------------------------13分∵∴f(x)=x3+ax2+1,xR,fx)=3x2+2ax.————————————————————2分f(0)=f=0.————————————————————————4分y−1=0(x−0)y=1.———--————5分∴f(x)在(0f(0))处的切线方程为,即(Ⅱ)由(Ⅰ)可知fx)=3x+2ax.22fx)=0或x=0x=−a令,可得.33220−a1.3—————————————————————7分xf(x)与f(x)的变化情况如下表所示.当变化时,x02221(0,−a)−a(−a333f(x)-0+f(x)1单调递减极小值单调递增a+2——————————————9分22f(x)(0,−a)在(−a上单调递增.∴上单调递减,在33321———————————10分a+222第6页/共页3当a+21,即−a−1时,f(x)=f(0)=1.———————————12分2当a+21,即1a0时,f(x)m=f=a+2.——————————14分a+3所以当−a−1时,f(x)的最大值为;当1a0f(x)时,的最大值为.219.(本小题分)35解:(Ⅰ)样本中学生在A餐厅用早餐的频率为,据此估计该学校2000名学生每日在A餐厅用早餐的人10035数为:2000=700.-------------------4分100603(Ⅱ)从该学校用午餐的学生中随机抽取1人,由样本的频率估计该学生在A餐厅用餐的概率p-------------------------------------------------5分==.--1005~33.-----------------------------------6分X,X的可能取值为538CX03P3=−==;1255353536=−=;125)1(CX13P)23354=−=;5125CXP()2(221())135327P(X==C33()3=.----------------------------------------10分5125X的分布列为XP0123836125541252712512539XEnp3)(==.-------------------------------------------12分55(Ⅲ)此问3分,结论和理由不唯一,阅卷时结合给出的理由酌情给分.设事件E为“随机抽查人,有2人在B餐厅用晚餐”.假设在B餐厅用晚餐的人数较上个星期没有变化,609023=.由上个星期的由样本估计从在学校用晚餐的学生中随机抽查1人,此人在B餐厅用晚餐的概率为2220样本数据估计P(E)=102()2−)8=0.003,336561示例答案1:可以认为发生了变化.理由如下:事件E是一个小概率事件,一般认为小概率事件在一次随机试验中不易发生,如果发生了,可以认为在B第7页/共页餐厅用晚餐的人数较上个星期发生了变化;示例答案2:无法确定有没有变化.理由如下:比较小,一般不容易发生,随机事件在一次随机实验中是否发生是随机的,事件E也是有可能发生的,所以无法确定有没有变化;示例答案3:无法确定有没有变化.理由如下:抽查的人数少,样本容量太小,可能抽到的大部分是在A餐厅用餐的学生(抽到了极端情形),所以抽查结果可能无法准确反映在两个餐厅的实际用餐人数.-------------------------------------------15分(20)(本小题分)e解:(Ⅰ)若a=,2e则f(x)=x2−ex,fx)=−ex.——————————————1分2所以h(x)=fx)=−ex,则hx)=e−ex.——————————————2分hx)0,即e−exx00x1;x1.令,解得,解得hx)0e−e令,即h(x)在(−上单调递增,在+)上单调递减.所以——————————4分(Ⅱ)(ⅰ)法一:因为h(x)=2ax−ex(x(0,+,所以hx)=2a−ex.hx)在(0,+)上单调递减,h=2a−1.——————————————6分易知1当2a−10即ah(0)=10,hx)h(0)0h(x)在(0,+)上单调递减,f(x)在(0,+)上单调递减,所以时,2h(x)=fx)0因为所以所以,,f(x).无极值—————————————————————————————7分1当2a−10即a时,2ex=2ax=ln(2a).由当hx)=0可得xh(x)与h(x)的变化情况如下表所示.变化时,x(0,ln(2a))+ln(2a)0(ln(2a),+∞)−h’(x)h(x)单调递增极大值单调递减(ln(2a+)∴当h(x)在(0,ln(2a上单调递增,在h(x)有极大值上单调递减.x=ln(2a)时,h(ln(2a=2aln(2a)−2a=2a(ln(2a)−.—————————————————8分第8页/共页1eh(ln(2a0ln(2a)a即①当时,22h(x)=fx)0,f(x)在(0,+)上单调递减.f(x)无极值.所以—————————————————————————————9分e②当因为h(ln(2a0即ln(2a)a时,2h(0)=10h(x)在(0,ln(2a所以上有且只有一个零点,记为.x0,xh(xf(x)与f(x)的变化情况如下表所示.当变化时,x(0,x0)x0(x0,ln(2a))−f(x)0+f(x)单调递减极小值单调递增e所以,当a时,f(x)有极小值.—————————————————————11分2(ⅰ)法二:exh(x)=fx)=2ax−e=x(2a−)((x+.xxexexx−exe−x)x令g(x)=2a−(x0),则x)=−=.———————————6分xx2x2当当x时,gx)g(x)在上单调递增;x+)gx)g(x)在+)上单调递减,时,g(x)=g=2a−.———————————————————————7分eex①当2a−e0,即a时,2a−2xh(x)=fx)f(x)在(0,+)上单调递减,f(x)所以无极值.—————————————————————————————8分e②当2a−e0,即a时,2exexexx0且x→0ex→→−→−2a−,→.当时,xxx2a−e0xg(x)=0h(x)=0又,使.000———————9分所以当x0)时,h(x)fx)f(x)(0,+)即在上单调递减.当x(0时,h(x)fx)f(x)(0,+)即在上单调递增.当x=0时,f(x)有极小值.第9页/共页ef(x)有极小值时,a的取值范围是(,+).———————————————11分2(ⅱ)m=f(0)=0−e02.h(x)=2ax−e0=000.———————————————————————12分m=02−2ax=a(x−−a002.—————————————————————13分1h=2a−ee0,a———————————————14分2.m−.———————————————————————————————15分(21)(本小题分)解答:(Ⅰ)S(5)所能取到的最大值是3,所能取到的最小值是-3;—————4分(Ⅱ)用反证法,假设任意k,ak0.—————5分设a是A中最后一个小于零的项(由a=−n2024可知这样的项存在),并且由=a=1n可知.ln

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论