




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江市丹徒区宜城中学2025届数学九上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将抛物线y=x2先向上平移1个单位,再向左平移2个单位,则新的函数解析式为().A. B. C. D.2.抛物线与坐标轴的交点个数为()A.0 B.1 C.2 D.33.如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<64.关于抛物线y=3(x-1)2+2,下列说法错误的是()A.开口方向向上 B.对称轴是直线x=lC.顶点坐标为(1,2) D.当x>1时,y随x的增大而减小5.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.6.若x1是方程(a≠0)的一个根,设,,则p与q的大小关系为()A.p<q B.p=q C.p>q D.不能确定7.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为().A.4 B.6 C.8 D.128.如图,已知,,,的长为()A.4 B.6 C.8 D.109.已知=3,则代数式的值是()A. B. C. D.10.如图,△ABC中,∠A=78°,AB=4,AC=1.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为▲.12.二次函数y=2(x﹣1)2+3的图象的顶点坐标是_________13.我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是____.14.如图,假设可以在两个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是______.15.如图,已知在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C顺时针旋转一定角度得△DEC,此时CD⊥AB,连接AE,则tan∠EAC=____.16.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长___________.17.化简:=______.18.如图,在中,,为边上一点,已知,,,则____________.三、解答题(共66分)19.(10分)已知二次函数y1=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m,n的值,(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,若点B与点M(﹣4,6)关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出y1>y2时x的取值范围.20.(6分)计算:+20﹣|﹣3|+(﹣)﹣1.21.(6分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.22.(8分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).23.(8分)如图,已知直线与轴交于点,与反比例函数的图象交于,两点,的面积为.(1)求一次函数的解析式;(2)求点坐标和反比例函数的解析式.24.(8分)某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题(1)本次调查的学生共有人;(2)补全条形统计图;(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.25.(10分)如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=S△CAO时,求点P的坐标.26.(10分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆高,测得,,求白塔的高.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由二次函数平移的规律即可求得答案.【详解】解:将抛物线y=x2先向上平移1个单位,则函数解析式变为y=x2+1,将y=x2+1向左平移2个单位,则函数解析式变为y=(x+2)2+1,故选:C.【点睛】本题主要考查二次函数的图象平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.2、C【分析】先计算自变量为0对应的函数值得到抛物线与轴的交点坐标,再解方程得抛物线与轴的交点坐标,从而可对各选项进行判断.【详解】当时,,则抛物线与轴的交点坐标为,当时,,解得,抛物线与轴的交点坐标为,所以抛物线与坐标轴有2个交点.故选C.【点睛】本题考查了抛物线与轴的交点:把求二次函数是常数,与轴的交点坐标问题转化为解关于的一元二次方程.3、C【解析】试题解析:∵二次函数y=ax2+bx+c的顶点为(1,-4),∴对称轴为x=1,而对称轴左侧图象与x轴交点横坐标的取值范围是-3<x<-2,∴右侧交点横坐标的取值范围是4<x<1.故选C.考点:图象法求一元二次方程的近似根.4、D【分析】开口方向由a决定,看a是否大于0,由于抛物线为顶点式,可直接确定对称轴与顶点对照即可,由于抛物线开口向上,在对称轴左侧函数值随x的增大而减小,在对称轴右侧y随x的增大而增大即可.【详解】关于抛物线y=3(x-1)2+2,a=3>0,抛物线开口向上,A正确,x=1是对称轴,B正确,抛物线的顶点坐标是(1,2),C正确,由于抛物线开口向上,x<1,函数值随x的增大而减小,x>1时,y随x的增大而增大,D不正确.故选:D.【点睛】本题考查抛物线的性质问题,由具体抛物线的顶点式抓住有用信息,会用二次项系数确定开口方向与大小,会求对称轴,会写顶点坐标,会利用对称轴把函数的增减性一分为二,还要结合a确定增减问题.5、D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.6、A【分析】把x1代入方程ax2-2x-c=0得ax12-2x1=c,作差法比较可得.【详解】解:∵x1是方程ax2-2x-c=0(a≠0)的一个根,
∴ax12-2x1-c=0,即ax12-2x1=c,
则p-q=(ax1-1)2-(ac+1.5)
=a2x12-2ax1+1-1.5-ac
=a(ax12-2x1)-ac-0.5
=ac-ac-0.5
=-0.5,
∵-0.5<0,
∴p-q<0,
∴p<q.
故选:A.【点睛】本题主要考查一元二次方程的解及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解,利用比差法比较大小是解题的关键.7、A【解析】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半).∴⊙O的半径4.故选A.8、D【分析】根据平行线分线段成比例得到,即,可计算出.【详解】解:,即,解得.故选D【点睛】本题主要考查平行线段分线段成比例定理,熟练掌握并灵活运用定理是解题的关系.9、D【分析】由得出,即,整体代入原式,计算可得.【详解】,,,则原式.故选:.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.10、C【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.点睛:相似三角形的判定:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两个三角形相似.三组边对应成比例,两个三角形相似.二、填空题(每小题3分,共24分)11、1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=1.故答案为112、(1,3)【解析】首先知二次函数的顶点坐标根据顶点式y=a(x+)2+,知顶点坐标是(-,),把已知代入就可求出顶点坐标.【详解】解:y=ax2+bx+c,配方得y=a(x+)2+,顶点坐标是(-,),∵y=2(x-1)2+3,∴二次函数y=2(x-1)2+3的图象的顶点坐标是(1,3).【点睛】解此题的关键是知二次函数y=ax2+bx+c的顶点坐标是(-,),和转化形式y=a(x+)2+,代入即可.13、.【解析】根据题意作出树状图,再根据概率公式即可求解.【详解】根据题意画树形图:共有6种等情况数,其中“A口进E口出”有一种情况,从“A口进E口出”的概率为;故答案为:.【点睛】此题主要考查概率的计算,解题的关键是依题意画出树状图.14、【分析】先设一个阴影部分的面积是x,可得整个阴影面积为3x,整个图形的面积是7x,再根据几何概率的求法即可得出答案.【详解】设一个阴影部分的面积是x,∴整个阴影面积为3x,整个图形的面积是7x,∴这个点取在阴影部分的概率是=,故答案为:【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15、【分析】设,得,根据旋转的性质得,∠1=30°,分别求得,,继而求得答案.【详解】如图,AB与CD相交于G,过点E作EF⊥AC延长线于点F,设,∵∠ACB=90°,∠B=30°,∴,∴,根据旋转的性质知:,∠DCE=∠ACB=90°,∵CD⊥AB,∴∠1+∠BAC=90°,∴∠1=30°,∵∠1+∠2+∠DCE=1800°,∴∠2=60°,∴,,∴,故答案为:.【点睛】本题考查了旋转的性质以及锐角三角函数的知识,构建合适的辅助线,借助解直角三角形求解是解答本题的关键.16、【分析】在直角三角形中,角的正切值等于其对边与邻边的比值,据此求解即可.【详解】在Rt△ABC中,∵∠A=α,AC=20,∴=,即BC=.故答案为:.【点睛】本题主要考查了三角函数解直角三角形,熟练掌握相关概念是解题关键.17、.【解析】试题解析:原式故答案为18、【分析】由题意直接根据特殊三角函数值,进行分析计算即可得出答案.【详解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案为:.【点睛】本题考查锐角三角函数,熟练掌握三角函数定义以及特殊三角函数值进行分析是解题的关键.三、解答题(共66分)19、(1)1,;(1)y=x+4;(3)x<﹣3或x>1.【分析】(1)将点P(-3,1)代入二次函数解析式得出3m﹣n=8,然后根据对称轴过点(-1,0)得出对称轴为x=-1,据此求出m的值,然后进一步求出n的值即可;(1)根据一次函数经过点P(﹣3,1),得出1=﹣3k+b,且点B与点M(﹣4,6)关于x=﹣1对称,所以B(1,6),所以6=1k+b,最后求出k与b的值即可;(3)y1>y1,则说明y1的函数图像在y1函数图像上方,据此根据图像直接写出范围即可.【详解】(1)由二次函数经过点P(﹣3,1),∴1=9﹣3m+n,∴3m﹣n=8,又∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴对称轴为x=﹣1,∴﹣=﹣1,∴m=1,∴n=﹣1;(1)∵一次函数经过点P(﹣3,1),∴1=﹣3k+b,∵点B与点M(﹣4,6)关于x=﹣1对称,∴B(1,6),∴6=1k+b,∴k=1,b=4,∴一次函数解析式为y=x+4;(3)由图象可知,x<﹣3或x>1时,y1>y1.【点睛】本题主要考查了二次函数的综合运用,熟练掌握相关概念是解题关键.20、2【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4+1﹣3﹣2=2.【点睛】本题考查了负指数幂的性质、零指数幂的性质和绝对值的性质,解题的关键是掌握上述运算的性质.21、(1)30;(2)图见解析;(3)144°,30;(4).【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3),,∴m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以.【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键.22、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.23、(1)(1);【分析】(1)作AH⊥y轴于H.根据△AOC的面积为1,求出OC,得到点C的坐标,代入y=1x+b即可结论;(1)把A、B的坐标代入y=1x+1得:n、m的值,进而得到点B的坐标,即可得到反比例函数的解析式.【详解】(1)作AH⊥y轴于H.∵A(-1,n),∴AH=1.∵△AOC的面积为1,∴OC⋅AH=1,∴OC=1,∴C(0,1),把C(0,1)代入y=1x+b中得:b=1,∴一次函数的解析式为y=1x+1.(1)把A、B的坐标代入y=1x+1得:n=-1,m=1,∴B(1,4).把B(1,4)代入中,k=4,∴反比例函数的解析式为.【点睛】本题考查了一次函数与反比例函数的综合.根据△AOC的面积求出点C的坐标是解答本题的关键.24、(1)100;(2)见解析;(3)【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医用织物管理规范
- 2025届安徽省部分省示范中学高考化学考前最后一卷预测卷含解析
- 心内科危重病人护理常规
- 工厂环境安全主题
- 小学生生命生存生活教育
- 统编版(2024)语文一年级下册第八单元综合素质测评B卷(含答案)
- 第二单元评估检测题(单元测试)无答案六年级下册数学冀教版
- 2025年弱粘煤项目合作计划书
- 弹力小车课件
- 宿舍美甲店创业计划书
- 企业廉洁风险防控课件教学
- 中医护理三基练习题库+答案
- 2025年护士三基考核试题及答案
- 七年级下册2025春季历史 教学设计《明朝对外关系》 学习资料
- 《设备管理标准化实施手册》
- 湖南省长沙市明达中学2024-2025学年九年级下学期入学考试英语试卷(含答案无听力原文及音频)
- 汽车站建设项目可行性研究报告
- 《中国古典园林之美》课件
- 2024年09月上海2024交通银行交银金融科技校园招考笔试历年参考题库附带答案详解
- 2025年人教五四新版八年级数学上册阶段测试试卷
- 2025年广西中马钦州产业园区管委会招商服务有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论