![河南省平顶山市叶县2022年数学九上期末经典试题含解析_第1页](http://file4.renrendoc.com/view5/M00/2E/00/wKhkGGaYWaOANzdRAAJhKxog-2Q299.jpg)
![河南省平顶山市叶县2022年数学九上期末经典试题含解析_第2页](http://file4.renrendoc.com/view5/M00/2E/00/wKhkGGaYWaOANzdRAAJhKxog-2Q2992.jpg)
![河南省平顶山市叶县2022年数学九上期末经典试题含解析_第3页](http://file4.renrendoc.com/view5/M00/2E/00/wKhkGGaYWaOANzdRAAJhKxog-2Q2993.jpg)
![河南省平顶山市叶县2022年数学九上期末经典试题含解析_第4页](http://file4.renrendoc.com/view5/M00/2E/00/wKhkGGaYWaOANzdRAAJhKxog-2Q2994.jpg)
![河南省平顶山市叶县2022年数学九上期末经典试题含解析_第5页](http://file4.renrendoc.com/view5/M00/2E/00/wKhkGGaYWaOANzdRAAJhKxog-2Q2995.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.剪纸是中国特有的民间艺术.以下四个剪纸图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=1753.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当1<a<5时,点B在⊙A内B.当a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外4.如图,将两张长为10,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么,菱形周长的最大值为()A. B. C. D.215.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中()A.甲的结果正确 B.乙的结果正确C.甲、乙的结果都不正确,应是一直增大 D.甲、乙的结果都不正确,应是一直减小7.如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A. B. C. D.8.将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A. B. C. D.9.如图所示的几何体,它的左视图是()A. B. C. D.10.已知正比例函数y=ax与反比例函数在同一坐标系中的图象如图,判断二次函数y=ax2+k在坐系中的大致图象是()A. B.C. D.二、填空题(每小题3分,共24分)11.已知点A(a,1)与点A′(5,b)是关于原点对称,则a+b=________.12.正六边形的边长为6,则该正六边形的面积是______________.13.已知点与点,两点都在反比例函数的图象上,且<<,那么______________.(填“>”,“=”,“<”)14.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于海里.15.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.16.方程(x﹣1)2=4的解为_____.17.二次函数y=x2−4x+5的图象的顶点坐标为.18.如图,是半圆,点O为圆心,C、D两点在上,且AD∥OC,连接BC、BD.若=65°,则∠ABD的度数为_____.三、解答题(共66分)19.(10分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.20.(6分)如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?21.(6分)在平面直角坐标系中有,为原点,,,将此三角形绕点顺时针旋转得到,抛物线过三点.(1)求此抛物线的解析式及顶点的坐标;(2)直线与抛物线交于两点,若,求的值;(3)抛物线的对称轴上是否存在一点使得为直角三角形.22.(8分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;(2)随机选取2名同学,求其中有乙同学的概率.23.(8分)抛物线经过点O(0,0)与点A(4,0),顶点为点P,且最小值为-1.(1)求抛物线的表达式;(1)过点O作PA的平行线交抛物线对称轴于点M,交抛物线于另一点N,求ON的长;(3)抛物线上是否存在一个点E,过点E作x轴的垂线,垂足为点F,使得△EFO∽△AMN,若存在,试求出点E的坐标;若不存在请说明理由.24.(8分)某市有、两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩,请利用树状图求三位同学恰好在同一个公园游玩的概率.25.(10分)“渝黔高速铁路”即将在2017年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.9月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆_____km.26.(10分)某种商品进价为每件60元,售价为每件80元时,每个月可卖出100件;如果每件商品售价每上涨5元,则每个月少卖10件设每件商品的售价为x元(x为正整数,且x>80).(1)若希望每月的利润达到2400元,又让利给消费者,求x的值;(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据轴对称图形的定义以及中心对称图形的定义分别判断即可得出答案.【详解】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;
B、此图形是轴对称图形,也是中心对称图形,故此选项正确;
C、此图形不是轴对称图形,也不是中心对称图形,故此选项错误;D、此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.2、D【分析】增长率问题,一般为:增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【详解】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故根据题意可列方程为:50+50(1+x)+50(1+x)2=1.故选D.【点睛】本题考查的是一元二次方程的运用,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可.3、B【解析】试题解析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项A、C、D正确,选项B错误.故选B.点睛:若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.4、C【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(10﹣x)2+22,解得:x=,∴4x=,即菱形的最大周长为cm.故选:C.【点睛】此题考查矩形的性质,本题的解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.5、B【分析】根据轴对称图形与中心对称图形的概念判定即可.【详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.6、B【分析】设PD=x,AB边上的高为h,求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:在中,∵,∴,设,边上的高为,则.∵,∴,∴,∴,∴,∴当时,的值随的增大而减小,当时,的值随的增大而增大,∴乙的结果正确.故选B.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.7、C【分析】连接BH,BH1,先证明△OBH≌△O1BH1,再根据勾股定理算出BH,再利用扇形面积公式求解即可.【详解】∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面积公式可得.故选C.【点睛】本题考查全等三角形的判定及性质、勾股定理、扇形面积的计算,利用全等对面积进行等量转换方便计算是关键.8、B【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【详解】解:将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:.故选:B.【点睛】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.9、D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.10、B【解析】根据正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,然后根据二次函数图象的性质即可得出答案.【详解】正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,
则二次函数y=ax2+k的图象开口向下,且与y轴的交点在y轴的正半轴,
所以大致图象为B图象.
故选B.【点睛】本题考查了二次函数及正比例函数与反比例函数的图象,属于基础题,关键是注意数形结合的思想解题.二、填空题(每小题3分,共24分)11、-1【解析】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-1,故答案为-1.12、【分析】根据题意可知边长为6的正六边形可以分成六个边长为6的正三角形,从而计算出正六边形的面积即可.【详解】解:连接正六变形的中心O和两个顶点D、E,得到△ODE,因为∠DOE=360°×=60°,又因为OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=OD•OE•sin60°=×6×6×=9.正六边形的面积为6×9=54.故答案为.【点睛】本题考查学生对正多边形的概念掌握和计算的能力,即要熟悉正六边形的性质,也要熟悉正三角形的面积公式.13、<【分析】根据反比例函数图象增减性解答即可.【详解】∵反比例函数的图象在每一个象限内y随x的增大而增大∴图象上点与点,且0<<∴<故本题答案为:<.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键.14、10【详解】试题分析:BD设为x,因为C位于北偏东30°,所以∠BCD=30°在RT△BCD中,BD=x,CD=3x又∵∠CAD=30°,在RT△ADC中,AB=20,AD=20+x,又∵△ADC∽△CDB,所以ADCD即:(3x)2=x(20+x),求出x=10,故考点:1、等腰三角形;2、三角函数15、1【解析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=×4×4=1,故答案为1.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.16、x1=3,x2=﹣1【解析】试题解析:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.故答案为x1=3,x2=﹣1.17、(2,1)【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.18、25°【分析】根据AB是直径可以证得AD⊥BD,根据AD∥OC,则OC⊥BD,根据垂径定理求得弧BC的度数,即可求得的度数,然后求得∠ABD的度数.【详解】解:∵是半圆,即AB是直径,∴∠ADB=90°,又∵AD∥OC,∴OC⊥BD,∴=65°∴=180°﹣65°﹣65°=50°,∴∠ABD=.故答案为:25°.【点睛】本题考查了垂径定理、圆周角的定理,利用垂径定理证明=65°是解决本题的关键.三、解答题(共66分)19、(1)75°(2)见解析【解析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.20、电线杆AB的高为8米【解析】试题分析:过C点作CG⊥AB于点G,把直角梯形ABCD分割成一个直角三角形和一个矩形,由于太阳光线是平行的,就可以构造出相似三角形,根据相似三角形的性质解答即可.试题解析:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米,∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG==6,∴AB=AG+GB=6+2=8(米),故电线杆AB的高为8米21、(1);点;(2);(3)存在,Q1(1,-1),Q2(1,2),Q3(1,4),Q4(1,-5).【分析】(1)用待定系数法可求抛物线的解析式,进行配成顶点式即可写出顶点坐标;(2)将直线与抛物线联立,通过根与系数关系得到,,再通过得出,通过变形得出代入即可求出的值;(3)分:,,三种情况分别利用勾股定理进行讨论即可.【详解】(1)∵,,∵绕点顺时针旋转,得到,∴点的坐标为:,将点A,B代入抛物线中得解得∴此抛物线的解析式为:∵;∴点(2)直线:与抛物线的对称轴交点的坐标为,交抛物线于,,由得:∴,∵,∴∴∴∴∴(3)存在,或,,∴设点,若,则即∴或若,则即∴若,则即∴即Q1(1,-1),Q2(1,2),Q3(1,4),Q4(1,-5).【点睛】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质,分情况讨论是解题的关键.22、(1)(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.【详解】解:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=;故答案为:(2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率=.【点睛】本题考查1、列表法与树状图法;2、概率公式,难度不大,掌握公式正确计算是解题关键.23、(1)抛物线的表达式为,(或);(1);(3)抛物线上存在点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).【分析】(1)由点O(0,0)与点A(4,0)的纵坐标相等,可知点O、A是抛物线上的一对对称点,所以对称轴为直线x=1,又因为最小值是-1,所以顶点为(1,-1),利用顶点式即可用待定系数法求解;(1)设抛物线对称轴交轴于点D、N(,),先求出=45°,由ON∥PA,依据平行线的性质得到=45°,依据等腰直角三角形两直角边的关系可得到=,解出即可得到点N的坐标,再运用勾股定理求出ON的长度;(3)先运用勾股定理求出AM和OM,再用ON-OM得MN,运用相似三角形的性质得到EF:FO的值,设E(,),分点E在第一象限、第二或四象限讨论,依据EF:FO=1:1列出关于m的方程解出即可.【详解】解:(1)∵抛物线经过点O(0,0)与点A(4,0),∴对称轴为直线x=1,又∵顶点为点P,且最小值为-1,,∴顶点P(1,-1),∴设抛物线的表达式为将O(0,0)坐标代入,解得∴抛物线的表达式为,即;(1)设抛物线对称轴交轴于点D,∵顶点P坐标为(1,-1),∴点D坐标为(1,0)又∵A(4,0),∴△ADP是以为直角的等腰直角三角形,=45°又∵ON∥PA,∴=45°∴若设点N的坐标为(,)则=解得,∴点N的坐标为(,)∴(3)抛物线上存在一个点E,使得△EFO∽△AMN,理由如下:连接PO、AM,∵=45°,=90°,∴,又∵由点D坐标为(1,0),得OD=1,∴,又∵=90°,由A(4,0),D(1,0)得AD=1,∴,同理可得,∴,∴AM:MN=:=1:1∵△EFO∽△AMN∴EF:FO=AM:MN=1:1设点E的坐标为(,)(其中),①当点E在第一象限时,,解得,此时点E的坐标为(,),②当点E在第二象限或第四象限时,,解得,此时点E的坐标为(,)综上所述,抛物线上存在一个点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).【点睛】本题是二次函数综合题,考查了运用待定系数法求解析式,运用勾股定理求线段长度,二次函数中相似的存在性问题,解题的关键是用点的坐标求出线段长度,并根据线段之间的关系,建立方程解出得到点的坐标.24、,见解析【分析】利用树状图法找出所有的可能情况,再找三位同学恰好在同一个公园游玩的情况个数,即可求出所求的概率.【详解】解:树状图如下:由上图可知一共有种等可能性,即、、、、、、、,它们出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全屋经销合同范本
- 代售合同范本版
- 2014新版旅游合同范本
- 公布合同范本函
- 入股公寓合同范本
- 2025年住宅按揭贷款清偿合同示例
- 2025年中国大陆货运代理合同范本
- 2025年中国恒大工程合同标准文本
- 2025年六方承诺合同范文
- 2025年性创新创业孵化器租赁合同
- 《突发事件应对法》考试题库150题(含答案)
- 2025下半年上海事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 2025-2030年中国汽车用铅酸蓄电池市场发展趋势展望与投资策略分析报告
- 天津市和平区2024-2025学年高一(上)期末质量调查物理试卷(含解析)
- 《呼吸》系列油画创作中诗意建构的研究与实践
- cpk自动计算电子表格表格
- 第五章 曲线运动(基础夯实)-高一物理人教版(2019)必修二单元巩固检测
- 排球正面上手传球 说课稿-2023-2024学年高一上学期体育与健康人教版必修第一册
- 2025年浙江省交通投资集团财务共享服务中心招聘2名高频重点提升(共500题)附带答案详解
- 客流统计系统施工方案
- 瓶装液化气送气工培训
评论
0/150
提交评论