版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆2.如果用配方法解方程x2-2x-3=0,那么原方程应变形为(A.(x-1)2=4 B.(x+1)2=43.下列图形中,是中心对称图形的是()A. B. C. D.4.如图所示,线段与交于点,下列条件中能判定的是()A.,,, B.,,,C.,,, D.,,,5.的绝对值为()A. B. C. D.6.对于函数y=,下列说法错误的是()A.它的图像分布在第一、三象限 B.它的图像与直线y=-x无交点C.当x>0时,y的值随x的增大而增大 D.当x<0时,y的值随x的增大而减小7.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼()A.条 B.条 C.条 D.条8.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A. B.C. D.9.已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A.0 B.1 C.2 D.﹣210.将0.000102用科学记数法表示为()A. B. C. D.11.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m= C.m= D.m=1012.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A.19.4 B.19.5 C.19.6 D.19.7二、填空题(每题4分,共24分)13.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.14.在Rt△ABC中,,,,则的值等于__.15.一元二次方程的解是_________.16.在中,.点在直线上,,点为边的中点,连接,射线交于点,则的值为__________.17.一元二次方程x2﹣4=0的解是._________18.二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1、A、A、…、A在y轴的正半轴上,点B、B、B、…、B在二次函数y=x2位于第一象限的图象上,若△A0B1A1、△A1B2A2、△A2B3A3、…、△A2017B2018A2018都为等边三角形,则△ABA的边长=____________.三、解答题(共78分)19.(8分)如图,中,,以为直径作,交于点,交的延长线于点,连接,.(1)求证:是的中点;(2)若,求的长.20.(8分)解方程:3x(x﹣1)=2﹣2x.21.(8分)将一块面积为的矩形菜地的长减少,它就变成了正方形,求原菜地的长.22.(10分)如图1,若二次函数的图像与轴交于点(-1,0)、,与轴交于点(0,4),连接、,且抛物线的对称轴为直线.(1)求二次函数的解析式;(2)若点是抛物线在一象限内上方一动点,且点在对称轴的右侧,连接、,是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;(3)如图2,若点是抛物线上一动点,且满足,请直接写出点坐标.23.(10分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?24.(10分)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的边QM在BC上,其余两个项点P,N分别在AB,AC上.(1)当矩形的边PN=PQ时,求此时矩形零件PQMN的面积;(2)求这个矩形零件PQMN面积S的最大值.25.(12分)如图,在△ABC中,∠A为钝角,AB=25,AC=39,,求tanC和BC的长.
26.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故A错误;B、平行四边形不是轴对称图形,是中心对称图形,故B错误;C、正五边形是轴对称图形,不是中心对称图形,故C错误;D、圆是轴对称图形,也是中心对称图形,故D正确.故选:D.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2、A【解析】先移项,再配方,即方程两边同时加上一次项系数一般的平方.【详解】解:移项得,x2−2x=3,配方得,x2−2x+1=4,即(x−1)2=4,故选:A.【点睛】本题考查了用配方法解一元二次方程,掌握配方法的步骤是解题的关键.3、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键.4、C【解析】根据平行线分线段成比例的推论:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,逐项判断即可得答案.【详解】A.∵∴不能判定,故本选项不符合题意;B.无法判断,则不能判定,故本选项不符合题意;C.∵,,,∴∴故本选项符合题意;D.∵∴不能判定,故本选项不符合题意;故选C.【点睛】本题考查平行线分线段成比例的推论,熟练掌握此推论判定平行是解题的关键.5、C【分析】根据绝对值的定义即可求解.【详解】的绝对值为故选C.【点睛】此题主要考查绝对值,解题的关键是熟知其定义.6、C【解析】A.k=1>0,图象位于一、三象限,正确;B.∵y=−x经过二、四象限,故与反比例函数没有交点,正确;C.当x>0时,y的值随x的增大而增大,错误;D.当x<0时,y的值随x的增大而减小,正确,故选C.7、B【分析】利用样本出现的概率估计整体即可.【详解】设湖里有鱼x条根据题意有解得,经检验,x=800是所列方程的根且符合实际意义,故选B【点睛】本题主要考查用样本估计整体,找到等量关系是解题的关键.8、D【解析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知其定义.9、D【分析】把x=1代入x2+px+1=0,即可求得p的值.【详解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,∴p=-2.故选D.【点睛】本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.10、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000102=1.02×10−4,
故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11、B【解析】试题分析:∵AB∥CD,∴△OCD∽△OEB,又∵E是AB的中点,∴2EB=AB=CD,∴,即,解得m=.故选B.考点:1.相似三角形的判定与性质;2.平行四边形的性质.12、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.二、填空题(每题4分,共24分)13、或【解析】由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点即可.【详解】解:由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为或.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C点.14、【分析】首先由勾股定理求出另一直角边AC的长度,再利用锐角三角函数的定义求解.【详解】∵在Rt△ABC中,∠C=90°,AB=10,BC=8,
∴,
∴,故答案为:.【点睛】本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.15、x1=0,x2=4【分析】用因式分解法求解即可.【详解】∵,∴x(x-4)=0,∴x1=0,x2=4.故答案为x1=0,x2=4.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.16、或【分析】分当点D在线段BC上时和当点D在线段CB的延长线上时两种情况讨论,根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:当点D在线段BC上时,如图,
过点D作DF//CE,∵,
∴,即EB=4BF,
∵点为边的中点,
∴AE=EB,∴,
当点D在线段CB的延长线上时,如图,
过点D作DF//CE,∵,
∴,即MF=2DF,
∵点为边的中点,
∴AE=EB,∴AM=MF=2DF∴,故答案为或.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17、x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.18、1【分析】分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1=a,BB2=b,CB3=c,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y=x2中,求a、b、c的值,得出规律.【详解】解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,
设A0A1=a,A1A2=b,A2A3=c,则AB1=a,BB2=b,CB3=c,在正△A0B1A1中,B1(a,),
代入y=x2中,得=×a2,解得a=1,即A0A1=1,
在正△A1B2A2中,B2(b,1+),
代入y=x2中,得1+=×b2,解得b=2,即A1A2=2,
在正△A2B3A3中,B3(c,3+),
代入y=x2中,得3+=×c2,解得c=3,即A2A3=3,
…
依此类推由此可得△A2017B1A1的边长=1,
故答案为:1.【点睛】本题考查了二次函数的综合运用.关键是根据正三角形的性质表示点的坐标,利用抛物线解析式求正三角形的边长,得到规律.三、解答题(共78分)19、(1)详见解析;(2).【分析】(1)根据题意得出,再根据三线合一即可证明;(2)在中,根据已知可求得,,,再证明,得出,代入数值即可得出CE.【详解】(1)证明:是的直径,,又是中点.(2)解:,,,,,,.,.【点睛】本题考查了相似三角形的判定及性质,熟练掌握定理是解题的关键.20、x1=1,x2=﹣.【解析】把右边的项移到左边,用提公因式法因式分解求出方程的根.【详解】解:3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0,3x+2=0,解得x1=1,x2=﹣.考点:解一元二次方程-因式分解法;因式分解-提公因式法.21、原菜地长为.【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)答:原菜地的长为.【点睛】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.22、(1)(2)存在,(3)Q点的坐标为或【分析】(1)根据抛物线的对称性求出,再利用待定系数法求解即可;(2)连接OP,设,根据三角形面积的关系可得,即可求出P点的坐标;(3)分两种情况:①当Q在BC的上方时,过C作交AB于D;②当Q在BC的下方时,连接BQ交y轴于点E,根据全等三角形的性质联立方程求解即可.【详解】(1)∵抛物线的对称轴为直线解得;(2)连接OP设∵P在对称轴的右侧;(3)①当Q在BC的上方时,过C作交AB于D设CD的解析式为∴设BQ的解析式为解得②当Q在BC的下方时,连接BQ交y轴于点E设BE的解析式为解得综上所述,Q点的坐标为或.【点睛】本题考查了二次函数的综合问题,掌握二次函数的性质、待定系数法、三角形面积公式、一次函数的性质、全等三角形的性质、平行线的性质、解方程组的方法是解题的关键.23、该单位这次共有30名员工去风景区旅游【分析】设该单位这次共有x名员工去风景区旅游,因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500-10(x-15)]x=10500;【详解】解:设该单位这次共有x名员工去风景区旅游因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500-10(x-15)]x=10500,整理,得x2-65x+1050=0,解得x1=35,x2=30当x1=35时,500-10(x-15)=300<320,故舍去x1;当x2=30时,500-10(x-15)=350>320,符合题意答:该单位这次共有30名员工去风景区旅游【点睛】考核知识点:二元一次方程应用.理解题是关键.24、(1)矩形零件PQMN的面积为2304mm2;(2)这个矩形零件PQMN面积S的最大值是2400mm2.【分析】(1)设PQ=xmm,则AE=AD-ED=80-x,再证明△APN∽△ABC,利用相似比可表示出,根据正方形的性质得到(80-x)=x,求出x的值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程促成居间合同集锦
- 2024年工程助理劳务合作协议
- 2024丙丁双方关于虚拟现实技术开发与应用合同
- 2024年严驰郑黛共同发起的公益项目捐赠合同
- 井区安全员年终个人述职汇报-述职报告范文
- 2024年广告效果监测与评估合同
- 2024年度石油天然气管道建设合同
- 2024年度网页美工设计外包合同
- 2024年度图书订阅合同
- 2024年度旅游管理与服务合同
- 装修垃圾清运处置方案
- JC-T 2536-2019水泥-水玻璃灌浆材料
- 品牌授权协议书
- 艺术设计就业职业生涯规划
- 《狙击手》和《新神榜杨戬》电影赏析
- 枪库应急处置预案
- 老年患者术后谵妄的护理干预
- 《凸透镜成像的规律》课件
- 仓库管理中的客户服务和沟通技巧
- 规划选址及用地预审
- 土砂石料厂项目融资计划书
评论
0/150
提交评论