贵州省毕节市2022-2023学年数学九上期末调研模拟试题含解析_第1页
贵州省毕节市2022-2023学年数学九上期末调研模拟试题含解析_第2页
贵州省毕节市2022-2023学年数学九上期末调研模拟试题含解析_第3页
贵州省毕节市2022-2023学年数学九上期末调研模拟试题含解析_第4页
贵州省毕节市2022-2023学年数学九上期末调研模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列四个交通标志图案中,中心对称图形共有()A.1 B.2 C.3 D.42.如图,平行四边形的顶点,在轴上,顶点在上,顶点在上,则平行四边形的面积是()A. B. C. D.3.在同一坐标系中,二次函数y=x2+2与一次函数y=2x的图象大致是()A.A B.B C.C D.D4.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐 B.甲队身高更整齐C.乙队身高更整齐 D.无法确定甲、乙两队身高谁更整齐5.若二次函数的x与y的部分对应值如下表,则当时,y的值为xy353A.5 B. C. D.6.由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是()A. B. C. D.7.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为()A. B. C. D.8.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3,则⊙O的半径为()A.10 B.8 C.7 D.59.已知一元二次方程,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根10.若函数y=的图象在第一、三象限内,则m的取值范围是()A.m>﹣3 B.m<﹣3 C.m>3 D.m<3二、填空题(每小题3分,共24分)11.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.12.已知实数m,n满足,,且,则=.13.如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,乙楼的高h=_____米(结果保留整数≈1.7,≈1.4).14.抛物线的顶点坐标是__________.15.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_____cm.16.已知点在直线上,也在双曲线上,则m2+n2的值为______.17.如图,在□ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则□ABCD的面积为________.18.已知正比例函数的图像与反比例函数的图像有一个交点的坐标是,则它们的另一个交点坐标为_________.三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.20.(6分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.21.(6分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;22.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?23.(8分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.24.(8分)已知如下图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点,按照的规律变换得到,请你在图1中画出.(2)在图2中画出一个与格点相似但相似比不等于1的格点.(说明:顶点都在网格线交点处的三角形叫做格点三角形.)25.(10分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用,表示这两个看不清的数字,那么小李的号码为(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求的值;(2)求出小王一次拨对小李手机号的概率.26.(10分)如图1,直线y=x与双曲线y=交于A,B两点,根据中心对称性可以得知OA=OB.(1)如图2,直线y=2x+1与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试证明:AC=BD;(2)如图3,直线y=ax+b与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试问:AC=BD还成立吗?(3)如果直线y=x+3与双曲线y=交于A,B两点,与坐标轴交点C,D两点,若DB+DC≤5,求出k的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据中心对称的概念和各图形的特点即可求解.【详解】∵中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合,∴第一个和第二个都不符合;第三个和第四个图形是中心对称图形,∴中心对称图形共有2个.故选:B.【点睛】本题主要考查中心对称图形的概念,掌握中心对称图形的概念和特点,是解题的关键.2、D【分析】先过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,再根据反比例函数系数k的几何意义,求得△ABE的面积=△COD的面积相等=|k2|,△AOE的面积=△CBD的面积相等=|k1|,最后计算平行四边形的面积.【详解】解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE与S△COD相等,又∵点C在的图象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故选D.【点睛】本题主要考查了反比例函数系数k的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.3、C【解析】已知一次函数、二次函数解析式,可根据图象的基本性质,直接判断.解答:解:因为一次函数y=2x的图象应该经过原点,故可排除A、B;因为二次函数y=x2+2的图象的顶点坐标应该为(0,2),故可排除D;正确答案是C.故选C.4、B【解析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲=1.7,S乙=2.4,∴S甲<S乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键5、D【分析】由表可知,抛物线的对称轴为,顶点为,再用待定系数法求得二次函数的解析式,再把代入即可求得y的值.【详解】设二次函数的解析式为,当或时,,由抛物线的对称性可知,,,把代入得,,二次函数的解析式为,当时,.故选D.【点睛】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为,顶点为,是本题的关键.6、A【解析】根据题意,由题目的结构特点,依据题目的已知条件,正视图是有两行,第一行两个,第二行三个且右对齐,从而得出答案.即可得到题目的结论.【详解】从正面看到的平面图形是:,故选A.【点睛】此题主要考查的是简单的组合体的三视图等有关知识,题目比较简单,通过考查,了解学生对简单的组合体的三视图等知识的掌握程度.熟练掌握简单的组合体的三视图是解决本题的关键.7、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.8、D【分析】根据垂径定理可得出AE的值,再根据勾股定理即可求出答案.【详解】解:∵OE⊥AB,∴AE=BE=4,∴.故选:D.【点睛】本题考查的知识点是垂径定理,根据垂径定理得出AE的值是解此题的关键.9、A【详解】解:∵a=2,b=-5,c=3,∴△=b2-4ac=(-5)2-4×2×3=1>0,∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,熟记公式正确计算是解题关键,难度不大.10、C【分析】根据反比例函数的性质得m﹣1>0,然后解不等式即可.【详解】解:根据题意得m﹣1>0,解得m>1.故选:C.【点睛】本题主要考查的是反比例函数的性质,当k>0时,图像在第一、三象限内,根据这个性质即可解出答案.二、填空题(每小题3分,共24分)11、【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.【详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=或x=-(舍去).故答案为:.【点睛】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.12、.【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.∴原式===,故答案为.考点:根与系数的关系.13、1【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,结合图形计算,得到答案.【详解】解:在Rt△ACD中,tan∠CAD=,∴CD=AD•tan∠CAD=30×tan30°=10≈17,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案为:1.【点睛】本题考查解直角三角形的应用,要注意利用已知线段和角通过三角关系求解.14、(-1,-3)【分析】根据抛物线顶点式得顶点为可得答案.【详解】解:∵抛物线顶点式得顶点为,∴抛物线的顶点坐标是(-1,-3)故答案为(-1,-3).【点睛】本题考查了二次函数的顶点式的顶点坐标,熟记二次函数的顶点式及坐标是解题的关键.15、2或1【分析】分两种情况:(1)容器内水的高度在球形容器的球心下面;(2)容器内水的高度在球形容器的球心上面;根据垂径定理和勾股定理计算即可求解.【详解】过O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,则OC3(cm).分两种情况讨论:(1)容器内水的高度在球形容器的球心下面时,如图①,延长OC交⊙O于D,容器内水的高度为CD=OD﹣CO=5﹣3=2(cm);(2)容器内水的高度在球形容器的球心是上面时,如图②,延长CO交⊙O于D,容器内水的高度为CD=OD+CO=5+3=1(cm).则容器内水的高度为2cm或1cm.故答案为:2或1.【点睛】本题考查了垂径定理以及勾股定理,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意分类思想的应用.16、1【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.详解:∵点P(m,n)在直线y=-x+2上,∴n+m=2,∵点P(m,n)在双曲线y=-上,∴mn=-1,∴m2+n2=(n+m)2-2mn=4+2=1.故答案为1.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间的关系是解题关键.17、16【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF,△DEM∽△BHM∴,∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵∴∴∴∴∴∴∴∵四边形ABCD是平行四边形∴故答案为:16.18、(-1,-2)【分析】根据反比例函数图象的对称性得到反比例函数图象与正比例函数图象的两个交点关于原点对称,所以写出点关于原点对称的点的坐标即可.【详解】∵正比例函数的图像与反比例函数的图像的两个交点关于原点对称,其中一个交点的坐标为,∴它们的另一个交点的坐标是.

故答案为:.【点睛】本题主要考查了反比例函数图象的中心对称性,理解反比例函数与正比例函数的交点一定关于原点对称是关键.三、解答题(共66分)19、(1)1;(2)128;(3).【分析】(1)由平行四边形的性质及角平分线的定义可得出AB=AE,进而再利用题中数据即可求解结论;(2)易证CED为直角三角形,则CE⊥AD,基础CE为平行四边形的高,利用平行四边形的面积公式计算即可;(3)易证∠BCE=90°,求cos∠AEB的值可转化为求cos∠EBC的值,利用勾股定理求出BE的长即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,(2)∵四边形ABCD是平行四边形.∴CD=AB=1,在CED中,CD=1,DE=6,CE=8,∴ED2+CE2=CD2,∴∠CED=90°.∴CE⊥AD,∴平行四边形ABCD的面积=AD•CE=(1+6)×8=128;(3)∵四边形ABCD是平行四边形.∴BC∥AD,BC=AD,∴∠BCE=∠CED=90°,AD=16,∴RtBCE中,BE==8,∴cos∠AEB=cos∠EBC===.【点睛】本题主要考查平行四边形的性质、平行四边形的面积公式运用、解直角三角形的有关知识及角平分线的性质等问题,应熟练掌握.20、(1)m=-1,n=-1;(2)y=-x+【分析】(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.【详解】(1)∵直线与双曲线相交于A(-1,a)、B两点,∴B点横坐标为1,即C(1,0)∵△AOC的面积为1,∴A(-1,1)将A(-1,1)代入,可得m=-1,n=-1;(2)设直线AC的解析式为y=kx+b∵y=kx+b经过点A(-1,1)、C(1,0)∴解得k=-,b=.∴直线AC的解析式为y=-x+.【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.21、(1)y=x2﹣x﹣6;(2)点D的坐标为(,﹣5);(3)△BCE的面积有最大值,点E坐标为(,﹣).【分析】(1)先求出点A,C的坐标,再将其代入y=x2+bx+c即可;(2)先确定BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,求出直线BC的解析式,再求出其与对称轴的交点即可;(3)如图2,连接OE,设点E(a,a2﹣a﹣6),由式子S△BCE=S△OCE+S△OBE﹣S△OBC即可求出△BCE的面积S与a的函数关系式,由二次函数的图象及性质可求出△BCE的面积最大值,并可写出此时点E坐标.【详解】解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),将A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得,解得,b=﹣1,c=﹣6,∴抛物线的解析式为:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,对称轴为直线x=,∵点A与点B关于对称轴x=对称,∴如图1,可设BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,在y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=3,∴点B的坐标为(3,0),设直线BC的解析式为y=kx﹣6,将点B(3,0)代入,得,k=2,∴直线BC的解析式为y=2x﹣6,当x=时,y=﹣5,∴点D的坐标为(,﹣5);(3)如图2,连接OE,设点E(a,a2﹣a﹣6),S△BCE=S△OCE+S△OBE﹣S△OBC=×6a+×3(﹣a2+a+6)﹣×3×6=﹣a2+a=﹣(a﹣)2+,根据二次函数的图象及性质可知,当a=时,△BCE的面积有最大值,当a=时,∴此时点E坐标为(,﹣).【点睛】本题考查的是二次函数的综合,难度适中,第三问解题关键是找出面积与a的关系式,再利用二次函数的图像与性质求最值.22、(1);(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;

(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【详解】解:(1)依题意有:;

(2)依题意有:

W=(80-50-x)(10x+160)===-10(x-7)2+5290,

因为x为偶数,

所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.23、(1)见解析;(2)⊙O的半径为1【分析】(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解决问题;

(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.求出OM,根据CM2=OC2-OM2=CF2-FM2构建方程即可解决问题;【详解】(1)连接AO并延长交⊙O于点E,连接EC.∵AE是直径,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切线,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.∵∠BCD=90°,∴BD是⊙O的直径,∵OM⊥BC,∴BM=MC,,∵OB=OD,∴OM=CD=1,∵∠BAC=∠BDC=2∠ACB,,∴∠BDF=∠CDF,∴∠ACB=∠CDF,∴,∴AB=CF=2,∵CM2=OC2﹣OM2=CF2﹣FM2,∴x2﹣12=(2)2﹣(x﹣1)2,∴x=1或﹣2(舍),∴⊙O的半径为1.【点睛】本题考查切线的性质,垂径定理,圆周角定理推论,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用转化的思想思考问题.24、(2)详见解析;(2)详见解析【分析】(2)按题中要求,把图形上的每个关键点图2中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A2B2C2单位后,依次连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论