版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是().A.k<1 B.k≤1 C.k≤1且k≠0 D.k<1且k≠02.下列各组图形中,一定相似的是()A.任意两个圆B.任意两个等腰三角形C.任意两个菱形D.任意两个矩形3.下列说法正确的是().A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等4.一块矩形菜地的面积是120平方米,如果它的长减少2米,菜地就变成正方形,则原菜地的长是()A.10 B.12 C.13 D.145.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤ D.t≥6.圆心角为140°的扇形的半径为3cm,则这个扇形的面积是()cm1.A.π B.3π C.9π D.6π7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A. B.2 C. D.8.两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A. B. C. D.9.如图所示,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①;②;③方程的两个根是;④方程有一个实根大于;⑤当时,随增大而增大.其中结论正确的个数是()A.个 B.个 C.个 D.个10.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限11.下列四张扑克牌图案,属于中心对称图形的是()A. B. C. D.12.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.步 B.步 C.步 D.步二、填空题(每题4分,共24分)13.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.4km,则M,C两点间的距离为______km.14.如图,直线AB与CD相交于点O,OA=4cm,∠AOC=30°,且点A也在半径为1cm的⊙P上,点P在直线AB上,⊙P以1cm/s的速度从点A出发向点B的方向运动_________s时与直线CD相切.15.图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点E、F、G、H分别为矩形AB、BC、CD、DA的中点,若AB=4,BC=6,则图乙中阴影部分的面积为_____.16.长度等于6的弦所对的圆心角是90°,则该圆半径为_____.17.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线的图象上,边CD交y轴于点E,若,则k的值为______.18.请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的表达式:______三、解答题(共78分)19.(8分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=4,求阴影部分的面积.20.(8分)如图,已知等边,以边为直径的圆与边,分别交于点、,过点作于点.(1)求证:是的切线;(2)过点作于点,若等边的边长为8,求的长.21.(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数方差中位数甲7①.7乙②.5.4③.(1)请将右上表补充完整:(参考公式:方差)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.22.(10分)(1)计算:cos60°﹣tan30°+tan60°﹣2sin245°;(2)解方程:2(x﹣3)2=x(x﹣3).23.(10分)解下列方程:(1);(2)24.(10分)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;线段OD的长为.②求∠BDC的度数;(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.25.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.26.某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?
参考答案一、选择题(每题4分,共48分)1、C【解析】分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2-2x+1=1有实数根,则△=b2-4ac≥1.详解:∵a=k,b=-2,c=1,∴△=b2-4ac=(-2)2-4×k×1=4-4k≥1,k≤1,∵k是二次项系数不能为1,k≠1,即k≤1且k≠1.故选C.点睛:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.2、A【分析】根据相似图形的性质,对各选项分析判断即可得出答案.【详解】A、任意两个圆,一个圆放大或缩小后能够与另外一个圆重合,所以任意两个圆一定是相似图形,故选A.B、任意两个等腰三角形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误.D、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误.故选A.【点睛】本题考查了相似图形的概念,灵活运用相似图形的性质是解题的关键.3、D【解析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】A.
是随机事件,错误;
B.
中奖的概率是1%,买100张该种彩票不一定会中奖,错误;
C.
明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;
D.
正确。
故选D.【点睛】本题考查概率的意义,解题的关键是掌握概率的意义.4、B【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)故选:B【点睛】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.5、B【分析】将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解不等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.6、D【解析】试题分析:扇形面积的计算公式为:,故选择D.7、D【解析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n时y取最小值,x=1时y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此种情形不合题意,所以m+n=﹣1+=.8、A【解析】由题意得,两个相似多边形的一组对应边的比为3:4.5=,∴它们的相似比为,故选A.9、A【解析】根据二次函数的图象与性质进行解答即可.【详解】解:∵抛物线开口方向向下∴a<0又∵对称轴x=1∴∴b=-2a>0又∵当x=0时,可得c=3∴abc<0,故①正确;∵b=-2a>0,∴y=ax2-2ax+c当x=-1,y<0∴a+2a+c<0,即3a+c<0又∵a<0∴4a+c<0,故②错误;∵,c=3∴∴x(ax-b)=0又∵b=-2a∴,即③正确;∵对称轴x=1,与x轴的左交点的横坐标小于0∴函数图像与x轴的右交点的横坐标大于2∴的另一解大于2,故④正确;由函数图像可得,当时,随增大而增大,故⑤正确;故答案为A.【点睛】本题考查二次函数的图象与性质,熟练运用二次函数的基本知识和正确运用数形结合思想是解答本题的关键.10、D【分析】此题涉及的知识点是反比例函数的图像与性质,根据点坐标P(﹣1,2)带入反比例函数y=中求出k值就可以判断图像的位置.【详解】根据y=的图像经过点P(-1,2),代入可求的k=-2,因此可知k<0,即图像经过二四象限.故选D【点睛】此题重点考察学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.11、B【解析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选B.12、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【点睛】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=12AB=1.1km【详解】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.14、1或5【分析】分类讨论:当点P在射线OA上时,过点P作PE⊥AB于点E,根据切线的性质得到PE=1cm,利用30度角所对的直角边等于斜边一半的性质的OP=2PE=2cm,求出⊙P移动的距离为4-2-1=1cm,由此得到⊙P运动时间;当点P在射线OB上时,过点P作PF⊥AB于点F,同样方法求出运动时间.【详解】当点P在射线OA上时,如图,过点P作PE⊥AB于点E,则PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P移动的距离为4-2-1=1cm,∴运动时间为s;当点P在射线OB上时,如图,过点P作PF⊥AB于点F,则PF=1cm,∵∠AOC=30°,∴OP=2PF=2cm,∴⊙P移动的距离为4+2-1=5cm,∴运动时间为s;故答案为:1或5.【点睛】此题考查动圆问题,圆的切线的性质定理,含30度角的直角边等于斜边一半的性质,解题中注意运用分类讨论的思想解答问题.15、【分析】根据S阴=S菱形PHQF﹣2S△HTN,再求出菱形PHQF的面积,△HTN的面积即可解决问题.【详解】如图,设FM=HN=a.由题意点E、F、G、H分别为矩形AB、BC、CD、DA的中点,∴四边形DFBH和四边形CFAH为平行四边形,∴DF∥BH,CH∥AF,∴四边形HQFP是平行四边形又HP=CH=DP=PF,∴平行四边形HQFP是菱形,它的面积=S矩形ABCD=×4×6=6,∵FM∥BJ,CF=FB,∴CM=MJ,∴BJ=2FM=2a,∵EJ∥AN,AE=EB,∴BJ=JN=2a,∵S△HBC=•6•4=12,HJ=BH,∴S△HCJ=×12=,∵TN∥CJ,∴△HTN∽△HCJ,∴=()2=,∴S△HTN=×=,∴S阴=S菱形PHQF﹣2S△HTN=6﹣=,故答案为.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质、菱形的判定与性质及相似三角形的性质.16、1【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB=1,∠AOB=90°,且OA=OB,在中,根据勾股定理得,即∴,故答案为:1.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.17、4【分析】过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,利用正方形的性质易证△ADG≌△DCF,得到AG=DF,设D点横坐标为m,则OF=AG=DF=m,易得OE为△CDF的中位线,进而得到OF=OC,然后利用勾股定理建立方程求出,进而求出k.【详解】如图,过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,∵四边形ABCD为正方形,∴CD=AD,∠ADC=90°∴∠ADG+∠CDF=90°又∵∠DCF+∠CDF=90°∴∠ADG=∠DCF在△ADG和△DCF中,∵∠AGD=∠DFC=90°,∠ADG=∠DCF,AD=CD∴△ADG≌△DCF(AAS)∴AG=DF设D点横坐标为m,则OF=AG=DF=m,∴D点坐标为(m,m)∵OE∥DF,CE=ED∴OE为△CDF的中位线,∴OF=OC∴CF=2m在Rt△CDF中,∴解得又∵D点坐标为(m,m)∴故答案为:4.【点睛】本题考查反比例函数与几何的综合问题,需要熟练掌握正方形的性质,全等三角形的判定和性质,中位线的判定和性质以及勾股定理,解题的关键是作出辅助线,利用全等三角形推出点D的横纵坐标相等.18、y=x2-1(答案不唯一).【解析】试题分析:抛物线开口向上,二次项系数大于0,然后写出即可.抛物线的解析式为y=x2﹣1.考点:二次函数的性质.三、解答题(共78分)19、(1)∠ABC=45°;(2)【分析】(1)根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质即可得到结论;
(2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)∵AB为半圆⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠ABC=45°;(2)∵AB=4,∴BC=∴阴影部分的面积=.【点睛】本题考查了扇形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.20、(1)证明见解析;(2).【分析】(1)连接,通过证明是等边三角形可得,从而证明,得证,即可证明是的切线;(2)根据三角函数求出FC、HC的长度,然后根据勾股定理即可求出的长.【详解】(1)证明:连接.是等边三角形,是等边三角形,,与相切(2)在直角三角形中,【点睛】本题考查了圆和三角形的综合问题,掌握圆的切线的性质、锐角三角函数的定义、勾股定理是解题的关键.21、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:,②乙的平均数为:,③乙的中位数为:,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.22、(1);(2)x1=3,x2=1.【分析】(1)把特殊角的三角函数值代入,然后进行计算即可;(2)移项后用分解因式法求解.【详解】解:(1)原式=;(2)移项,得:2(x﹣3)2﹣x(x﹣3)=0,即(x﹣3)(2x﹣1﹣x)=0,∴x﹣3=0或x﹣1=0,解得:x1=3,x2=1.【点睛】本题考查了特殊角的三角函数值的有关运算和一元二次方程的解法,属于基础题型,熟练掌握基本知识是解题的关键.23、(1)(2).【分析】(1)利用因式分解法解方程得出答案;(2)利用因式分解法解方程得出答案;【详解】(1)解得:(2)解得:【点睛】本题考查解一元二次方程-因式分解法,熟练掌握计算法则是解题关键.24、(1)①,4;②;(2),证明见解析.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;②由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【详解】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;∵旋转至,∴,,,∴为等边三角形∴,,故答案为:6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网红岩板楼梯施工方案
- 酒店、厨房设备用品项目风险分析和评估报告
- 2025年航空传感器市场分析报告
- 2020-2025年中国饮水机行业市场深度分析及发展前景预测报告
- 热熔标线施工方案
- 工业园区土地交易居间服务
- 水产养殖居间合同
- 金融服务公司装修保修协议
- 湖北医药学院《包装材料及应用》2023-2024学年第一学期期末试卷
- 湖北文理学院《基因技术的临床应用》2023-2024学年第一学期期末试卷
- 滴滴补贴方案
- 民宿建筑设计方案
- 干部基本信息审核认定表
- 2023年11月外交学院(中国外交培训学院)2024年度公开招聘24名工作人员笔试历年高频考点-难、易错点荟萃附答案带详解
- 春节行车安全常识普及
- 电机维护保养专题培训课件
- 汽车租赁行业利润分析
- 春节拜年的由来习俗来历故事
- 2021火灾高危单位消防安全评估导则
- 佛山市服务业发展五年规划(2021-2025年)
- 房屋拆除工程监理规划
评论
0/150
提交评论