甘肃省白银市景泰四中学2022年数学九上期末统考试题含解析_第1页
甘肃省白银市景泰四中学2022年数学九上期末统考试题含解析_第2页
甘肃省白银市景泰四中学2022年数学九上期末统考试题含解析_第3页
甘肃省白银市景泰四中学2022年数学九上期末统考试题含解析_第4页
甘肃省白银市景泰四中学2022年数学九上期末统考试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球,摸出白球的概率是()A. B. C. D.2.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141° B.144° C.147° D.150°3.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.4.等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数 C.反比例函数 D.二次函数5.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,则k的取值范围是()A.k≤ B.k< C.k≥ D.k>6.如图,在△ABC中,点D,E分别在边AB,AC上,且,则S△ADE:S四边形BCED的值为()A.1: B.1:3 C.1:8 D.1:97.如图,平面直角坐标系中,,反比例函数的图象分别与线段交于点,连接.若点关于的对称点恰好在上,则()A. B. C. D.8.函数和在同一坐标系中的图象大致是()A. B. C. D.9.如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于()A.1 B.6 C.8 D.1210.抛物线与坐标轴的交点个数为()A.个 B.个或个 C.个 D.不确定二、填空题(每小题3分,共24分)11.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为_____m.12.已知:等边△ABC,点P是直线BC上一点,且PC:BC=1:4,则tan∠APB=_______,13.已知m,n是方程的两个根,则代数式的值是__________.14.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)15.抛物线y=(x﹣1)(x﹣3)的对称轴是直线x=_____.16.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h(m)与飞行时间t(s)的关系式是,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s.17.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其长边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其长边恰好落在水平桌面l上,则木板上点A滚动所经过的路径长为_____.18.如图,在正方形中,以为边作等边,延长,分别交于点,连接、、与相交于点,给出下列结论:①;②;③;④,其中正确的是__________.三、解答题(共66分)19.(10分)如图,一艘船由A港沿北偏东65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向.求:(1)∠C的度数;(2)A,C两港之间的距离为多少km.20.(6分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.21.(6分)某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式+36,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示:(1)试确定、的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)几月份出售这种水产品每千克利润最大?最大利润是多少?22.(8分)如图,在中,,,垂足为,为上一点,连接,作交于.(1)求证:.(2)除(1)中相似三角形,图中还有其他相似三角形吗?如果有,请把它们都写出来.(证明不做要求)23.(8分)如图,抛物线与轴交于点,直线与轴交于点与轴左侧抛物线交于点,直线与轴右侧抛物线交于点.(1)求抛物线的解析式;(2)点是直线上方抛物线上一动点,求面积的最大值;(3)点是抛物线上一动点,点是抛物线对称轴上一动点,请直接写出以点为顶点的四边形是平行四边形时点的坐标.24.(8分)如图,在中,,分别是,上的点,且,连接,,.(1)求证:四边形是平行四边形;(2)若平分,,,,求的长.25.(10分)受非洲猪瘟的影响,2019年的猪肉价格创历史新高,同时其他肉类的价格也有一定程度的上涨,某超市11月份的猪肉销量是羊肉销量的倍,且猪肉价格为每千克元羊肉价格为每千克元.(1)若该超市11月份猪肉、羊肉的总销售额不低于万元,则11月份的猪肉销量至少多少千克?(2)12月份香肠腊肉等传统美食的制作,使得市场的猪肉需求加大,12月份猪肉的销量比11月份增长了,由于国家对猪肉价格的调控,12月份的猪肉价格比11月份降低了,羊肉的销量是11月份猪肉销量的,且价格不变.最终,该超市12月份猪肉和.羊肉的销售额比11月份这两种肉的销售额增加了,求的值.26.(10分)如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据概率公式计算即可.【详解】∵盒子内装有红球1个、绿球1个、白球2个共4个球,∴出一个球,摸出白球的概率是,故选:A.【点睛】此题考查概率的公式,熟记概率的计算方法是解题的关键.2、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180(n≥3)且n为整数).3、B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,此项不符题意B、既是中心对称图形,又是轴对称图形,此项符合题意C、是轴对称图形,但不是中心对称图形,此项不符题意D、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【点睛】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.4、B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.5、D【解析】根据题意可以得到1-3k<0,从而可以求得k的取值范围,本题得以解决.【详解】∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,∴1-3k<0,解得,k>,故选D.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.6、C【分析】易证△ADE∽△ABC,然后根据相似三角形面积的比等于相似比的平方,继而求得S△ADE:S四边形BCED的值.【详解】∵,∠A=∠A,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:9,∴S△ADE:S四边形BCED=1:8,故选C.【点睛】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.7、C【解析】根据,可得矩形的长和宽,易知点的横坐标,的纵坐标,由反比例函数的关系式,可用含有的代数式表示另外一个坐标,由三角形相似和对称,可用求出的长,然后把问题转化到三角形中,由勾股定理建立方程求出的值.【详解】过点作,垂足为,设点关于的对称点为,连接,如图所示:则,易证,,,在反比例函数的图象上,,在中,由勾股定理:即:解得:故选C.【点睛】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现与的比是是解题的关键.8、D【解析】试题分析:当k<0时,反比例函数过二、四象限,一次函数过一、二、四象限;当k>0时,反比例函数过一、三象限,一次函数过一、三、四象限.故选D.考点:1.反比例函数的图象;2.一次函数的图象.9、B【解析】本题先根据正方形的性质和等量代换得到判定全等三角形的条件,再根据全等三角形的判定定理和面积相等的性质得到S、S、、与△ABC的关系,即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.【详解】解:如图所示,过点F作FG⊥AM交于点G,连接PF.根据正方形的性质可得:AB=BE,BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD,BC=BD所以△ABC≌△EBD(SAS),故S=,同理可证,△KME≌△TPF,△FGK≌△ACT,因为∠QAG=∠AGF=∠AQF=90,所以四边形AQFG是矩形,则QF//AG,又因为QP//AC,所以点Q、P,F三点共线,故S+S=,S=.因为∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA,在△AQF和△ACB中,因为∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA),同理可证△AQF≌△BCA,故S1﹣S2+S3+S1==31=6,故本题正确答案为B.【点睛】本题主要考查正方形和全等三角形的判定与性质.10、C【分析】根据题意,与y轴有一个交点,令y=0,利用根的判别式进行判断一元二次方程的根的情况,得到与x轴的交点个数,即可得到答案.【详解】解:抛物线与y轴肯定有一个交点;令y=0,则,∴==;∴抛物线与x轴有2个交点;∴抛物线与坐标轴的交点个数有3个;故选:C.【点睛】本题考查了二次函数与坐标轴的交点情况,以及一元二次方程根的判别式,解题的关键是掌握二次函数的性质,正确得到与坐标轴的交点.二、填空题(每小题3分,共24分)11、20m【详解】∵CD∥AB,∴△ABE∽△DCE,∴,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴,∴3AB=60,∴AB=20m.故答案为20m.12、或.【分析】过A作AD⊥BC于D,设等边△ABC的边长为4a,则DC=2a,AD=2a,PC=a,分类讨论:当P在BC的延长线上时,DP=DC+CP=2a+a=3a;当P点在线段BC上,即在P′的位置,则DP′=DC-CP′=a,然后分别利用正切的定义求解即可.【详解】解:如图,过A作AD⊥BC于D,设等边△ABC的边长为4a,则DC=2a,AD=2a,PC=a,当P在BC的延长线上时,DP=DC+CP=2a+a=3a,在Rt△ADP中,tan∠APD=;当P点在线段BC上,即在P′的位置,则DP′=DC-CP′=a,在Rt△ADP′中,tan∠AP′D=.故答案为:或.【点睛】本题考查解直角三角形;等边三角形的性质.13、1【分析】由m,n是方程x2-x-2=0的两个根知m+n=1,m2-m=2,代入到原式=2(m2-m)-(m+n)计算可得.【详解】解:∵m,n是方程x2-x-2=0的两个根,

∴m+n=1,m2-m=2,

则原式=2(m2-m)-(m+n)

=2×2-1

=4-1

=1,

故答案为:1.【点睛】本题主要考查根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,,x1x2=.14、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.15、1【分析】将抛物线的解析式化为顶点式,即可得到该抛物线的对称轴;【详解】解:∵抛物线y=(x﹣1)(x﹣3)=x1﹣4x+3=(x﹣1)1﹣1,∴该抛物线的对称轴是直线x=1,故答案为:1.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.16、1【解析】根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t==1s,故答案为1.17、π【分析】木板转动两次的轨迹如图(见解析):第一次转动是以点M为圆心,AM为半径,圆心角为60度;第二次转动是以点N为圆心,为半径,圆心角为90度,根据弧长公式即可求得.【详解】由题意,木板转动两次的轨迹如图:(1)第一次转动是以点M为圆心,AM为半径,圆心角为60度,即所以弧的长(2)第二次转动是以点N为圆心,为半径,圆心角为90度,即所以弧的长(其中半径)所以总长为故答案为.【点睛】本题考查了图形的翻转、弧长公式(弧长,其中是圆心角弧度数,为半径),理解图形翻转的轨迹是解题关键.18、①②③④【分析】①正确.利用直角三角形30度角的性质即可解决问题;②正确,通过计算证明∠BPD=135°,即可判断;③正确,根据两角相等两个三角形相似即可判断;④正确.利用相似三角形的性质即可证明.【详解】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ABC=∠ADC=∠BCD=90°,

∴∠ABE=∠DCF=90°-60°=30°,在和中,,∴,∴,∴在中,∠A=90°,∠ABE=30°,∴,故①正确;∵PC=CD,∠PCD=30°,

∴∠PDC=∠DPC=75°,∴∠BPD=∠BPC+∠DPC=60°+75°=135°,故②正确;∵∠ADC=90°,∠PDC=75°,

∴∠EDP=∠ADC-∠PDC=90°-75°=15°,

∵∠DBA=45°,∠ABE=30°,

∴∠EBD=∠DBA-∠ABE=45°-30°=15°,

∴∠EDP=∠EBD=15°,

∵∠DEP=∠BED,

∴△PDE∽△DBE,故③正确;∵△PDE∽△DBE,∴,∴,故④正确;综上,①②③④都正确,故答案为:①②③④.【点睛】本题考查相似三角形的判定和性质,等边三角形的性质,正方形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识.三、解答题(共66分)19、(1)∠C=60°(2)AC=【分析】(1)根据方位角的概念确定∠ACB=40°+20°=60;(2)AB=30,过B作BE⊥AC于E,解直角三角形即可得到结论.【详解】解:(1)如图,在点C处建立方向标根据题意得,AF∥CM∥BD∴∠ACM=∠FAC,∠BCM=∠DBC∴∠ACB=∠ACM+∠BCM=40°+20°=60°,(2)∵AB=30,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,

∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km,【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.20、(1)证明见解析;(2)证明见解析.【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA,利用“内错角相等,两直线平行”可得出AE//OD,结合切线的性质即可证出DE⊥AE;(2)过点D作DM⊥AB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、∠AED=∠AMD=90°即可证出△DAE≌△DAM(SAS),根据全等三角形的性质可得出AE=AM,由∠EAD=∠MAD可得出,进而可得出CD=BD,结合DE=DM可证出Rt△DEC≌Rt△DMB(HL),根据全等三角形的性质可得出CE=BM,结合AB=AM+BM即可证出AE+CE=AB.【详解】连接OD,如图1所示,,AD平分,,,,,是的切线,,,;过点D作于点M,连接CD、DB,如图2所示,平分,,,,在和中,,≌,,,,,在和中,,≌,,.【点睛】本题考查了全等三角形的判定与性质、切线的性质、角平分线的性质、等腰三角形的性质、平行线的判定与性质以及圆周角定理,解题的关键是:(1)利用平行线的判定定理找出AE//OD;(2)利用全等三角形的性质找出AE=AM、CE=BM.21、(1),;(2);(3)6月份出售这种水产品每千克利润最大,最大利润是每千克11元.【分析】(1)把图中的已知坐标代入解析式,解方程组求出b,c即可;(2)由题意得,化简函数关系式即可;(3)已知y与x的函数关系式,用配方法化为顶点式,根据抛物线的性质即可求出最大值.【详解】解:(1)根据图象,将和分别代入解析式得:解得:,;(2)由题意得:,∴(3)将化为顶点式得:,∵,∴抛物线开口向下,∴当时,二次函数取得最大值,此时y=11,所以6月份出售这种水产品每千克利润最大,最大利润是每千克11元。【点睛】本题考查学生利用二次函数解决实际问题的能力.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.22、(1)证明见解析;(2)有,见解析.【分析】(1)通过线段垂直和三角形内角之和为180°求出和,从而证明.(2)通过两内角相等写出所有相似三角形即可.【详解】(1)∵∴,∴又∵,∴,又∵∴,又∵,∴,∴,∴(2)∵,∴;∴,∴,同理得,∴,即,【点睛】本题考查了相似三角形的性质以及证明,掌握相似三角形的判定定理是解题的关键.23、(1);(2)当时,;(3)点的坐标为或.【分析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点C的坐标,过点作轴交直线于点,设P,则,则得到线段PQ的长度,然后利用三角形面积公式,即可求出答案;(3)先求出直线BD,然后得到点E的坐标,由以点为顶点的四边形是平行四边形,设点M为(m,),则可分为三种情况进行分析:①当CN与ME为对角线时;②当CE与MN为对角线时;③当EN与CM为对角线时;由平行四边形对角线互相平分,即可得到m的值,然后求出点M的坐标.【详解】解:(1)把代入中得,解得,抛物线的解析式为:.(2)由得,,.过点作轴交直线于点,设,则,,.当时,;∴面积的最大值为64.(3)∵直线与轴交于点,∴点D的坐标为:(0,),∵点B为(),∴直线BD的方程为:;联合抛物线与直线BD,得:,解得:或(为点B),∴点E的坐标为:(3,);∵抛物线的对称轴为:,∴点N的横坐标为;∵以点为顶点的四边形是平行四边形,且点C(),点E(3,),设点M为(m,),则可分为三种情况进行分析:①当CN与ME为对角线时,由平行四边形对角线互相平分,∴,解得:;∴点M的纵坐标为:,∴点M的坐标为:();②当CE与MN为对角线时,由平行四边形对角线互相平分,∴,解得:,∴点M的纵坐标为:,∴点M的坐标为:();③当EN与CM为对角线时,由平行四边形对角线互相平分,∴,解得:,∴点M的纵坐标为:;∴点M的坐标为:();综合上述,点的坐标为:或.【点睛】本题考查了二次函数的综合问题,二次函数的性质和二次函数的最值问题,二次函数与一次函数的交点问题,求二次函数的解析式,以及平行四边形的性质,坐标与图形,解题的关键是熟练掌握二次函数的性质,运用数形结合的方法和分类讨论的方法进行解题.24、(1)见解析;(2).【分析】(1)根据平行四边形的性质得到∠A=∠C,AD=CB,根据全等三角形的性质和平行四边形的判定定理即可得到结论;(2)根据平行线的性质和角平分线的定义得到∠DAF=∠AFD,求得AD=DF,根据勾股定理的逆定理和勾股定理即可得到结论.【详解】(1)证明:∵四边形是平行四边形,∴且.∵,∴,即,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论