浙江省宁波市2021年中考数学试卷(解析版)_第1页
浙江省宁波市2021年中考数学试卷(解析版)_第2页
浙江省宁波市2021年中考数学试卷(解析版)_第3页
浙江省宁波市2021年中考数学试卷(解析版)_第4页
浙江省宁波市2021年中考数学试卷(解析版)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市2021中考数学试卷

试题卷I

一、选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)

1.在-3,-1,0-2这四个数中,最小的数是()

A.-3B.-1C.0D.2

【答案】A

【解析】

【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.

【详解】这四个数在数轴上的位置如图所示:

—1—4~I-•—-I—•~।~~।--->

-5-4-3-2-1012345

由数轴的特点可知,这四个数中最小的数是-3.

故选A.

2.计算。上(一。)的结果是()

A.a2B.-a2C./D.-a4

【答案】D

【解析】

【分析】根据单项式乘以单项式和同底数基的运算法则解答即可.

【详解】解:原式=一].

故选:D

【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.

3,2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千

米.数320000000科学记数法表示为()

A.32xl07B.3.2xl08C.3.2xlO9D.0.32xlO9

【答案】B

【解析】

【分析】科学记数法的形式是:axlO",其中14时<10,九为整数.所以。=3.2,〃取决于原数小数

点的移动位数与移动方向,|〃|是小数点的移动位数,往左移动,〃为正整数,往右移动,〃为负整数.本

题小数点往左移动到3的后面,所以〃=8.

【详解】解:32()0()()()00=3.2xl()8.

故选:B.

【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定

好的值,同时掌握小数点移动对一个数的影响.

4.如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()

C.

【答案】C

【解析】

【分析】根据主视图是从物体的正面看到的图形解答即可.

【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:

故选:C.

【点睛】本题考查了简单组合体的三视图,属于常考题型,熟知主视图是从物体的正面看到的图形是解题

关键.

5.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数嚏(单位:环)及方差S?(单

位:环2)如下表所示:

甲乙丙T

X9899

S21.60.830.8

根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()

A.甲B.乙C.丙D.T

【答案】D

【解析】

【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.

【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,

由表可知,甲,丙,丁的平均值最大,都是9,

从甲,丙,丁中选取,

:甲的方差是1.6,丙的方差是3,丁的方差是0.8,

222

:.Sr<Sv<S^,

,发挥最稳定的运动员是丁,

从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.

故选:D.

【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离

平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平

均数越小,即波动越小,数据越稳定.

6.要使分式」一有意义,x的取值应满足()

x+2

A.x^OB.2C.x>-2D.x>—2

【答案】B

【解析】

【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案.

【详解】解::分式工有意义,

x+2

「.x+2w0,

xw—2.

故选:B.

【点睛】本题考查的是分式有意义的条件,掌握“分式有意义,则分母不为零”是解题的关键.

7.如图,在AABC中,NB=45°,NC=60°,AZ)_LBC于点。,BD=6若E,尸分别为AB,BC

中点,则EE的长为()

A石Rgr1D新

A.-----.-----V*1U.-----

322

【答案】C

【解析】

【分析】根据条件可知△A8D为等腰直角三角形,则8£>=A。,△AOC是30°、60°的直角三角形,可求

AC

出4c长,再根据中位线定理可知EF=k。

2

【详解】解:因为AD垂直BC,

则△AB。和△48都是直角三角形,

又因为ZB=45°,NC=60。,

所以AO=3O=G,

因为sinZC=—=—

AC2

所以AC=2,

因为EF为△ABC的中位线,

AC

所以EF^—=],

2

故选:C.

【点睛】本题主要考查了等腰直角三角形、锐角三角形函数值、中位线相关知识,根据条件分析利用定理

推导,是解决问题的关键.

8,我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,惜酒一斗直粟三斗.今持粟三斛,

得酒五斗,问清、酷酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醋酒价值3斗谷子,现在拿

30斗谷子,共换了5斗酒,问清酒、醋酒各几斗?如果设清酒x斗,醋酒y斗-,那么可列方程组为()

x+y=30x+y=30

%+y=5x+y=5D.RyV

C.

10x+3y=303x+10y=30三+2=5

1031310

【答案】A

【解析】

【分析】根据“现在拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.

x+y=5

【详解】解:依题意,得:《

10x+3y=30

故选:A.

【点睛】本题考查了由实际问题抽象出二元一次方程组和数学常识,找准等量关系,正确列出二元一次方

程组是解题的关键.

9.如图,正比例函数%=依(匕<0)的图象与反比例函数%=」■化<0)的图象相交于A,B两点,点8

的横坐标为2,当y>%时,x的取值范围是()

B.-2<x<0或x〉2

D.-2<x<0或0<x<2

【答案】C

【解析】

【分析】根据轴对称的性质得到点A的横坐标为-2,利用函数图象即可确定答案.

【详解】解:..•正比例函数与反比例函数都关于原点对称,

.,.点A与点3关于原点对称,

:点B的横坐标为2,

...点A的横坐标为-2,

由图象可知,当x<—2或0<x<2时,正比例函数y=仁》依<0)的图象在反比例函数%=二(&<。)

的图象的上方,

...当x<-2或0cx<2时,>y2,

故选:C.

【点睛】此题考查正比例函数与反比例函数的性质及相交问题,函数值的大小比较,正确理解图象是解题

的关键.

10.如图是一个由5张纸片拼成的口ABC。,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形

纸片的面积都为5,另两张直角三角形纸片的面积都为邑,中间一张矩形纸片EFG”的面积为S3,FH

与GE相交于点O.当的面积相等时,下列结论一定成立的是()

【答案】A

【解析】

【分析】根据△AED和ABCG是等腰直角三角形,四边形AB8是平行四边形,四边形G是矩形可得

出AE=DE=BG=CG=a,HE=GF,GH=EF,点、O是矩形HEFG的中心,设AE=DE=BG=CG=a,HE=GF=b,

GH=EF=c,过点。作。Pl■所于点P,。。,6尸于点。,可得出OP,OQ分别是和AEGF的中位线,

从而可表示。P,OQ的长,再分别计算出5,邑,S3进行判断即可

【详解】解:由题意得,△AEO和ABCG是等腰直角三角形,

ZADE=ZDAE=ZBCG=ZGBC=45°

V四边形ABCD是平行四边形,

:.AD=BC,CD=AB,ZADC=ZABC,NBAD=NDCB

:.ZHDC=ZFBA,ZDCH=ZBAF,

:./\AED^/\CGB,ACDHgABF

:.AE=DE=BG=CG

:四边形HEFG是矩形

GH=EF,HE=GF

设AE=DE=BG=CG=a,HE=GF=b,GH=EF=c

过点。作OPLEF于点尸,。。,6下于点。

:.OP//HE,OQ//EF

••,点。是矩形”EFG对角线交点,即”尸和EG的中点,

:.OP,。。分别是△尸”£和第6尸的中位线,

OP^-HE^-b,OQ^-EF^-c

2222

.・•3.。尸=g3尸・OQ=;3_勿Xgc=;3_b)c

SMCF=—AE^P=—ax—h=—ah

^OE2224

,S\BOF=S\AOE

-(a-b)c=—ab,即ac-hc=ah

44

11)

而工=S^ED=-AE-DE=-a~,

11121910

S?—S&\FB=-A/**BF——(a+C)(Q—b)——(a~-ah+etc—be)——(Q—-ah4-ab)——ci~

22

所以,S,=S2,故选项A符合题意,

1222

S3=HE+EF=(a-b)(a+c)=a—be—ab+ac=a+ab-ab=a

•••号工/,故选项8不符合题意,

而AB=AD于EH=GH都不一定成立,故C。都不符合题意,

故选:A

【点睛】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出与,S,&之间的关系.

试题卷n

二、填空题(每小题5分,共30分)

11.-5的绝对值是.

【答案】5

【解析】

【分析】根据绝对值的定义计算即可.

【详解】解:卜5|=5,

故答案为:5.

【点睛】本题考查了绝对值的定义,掌握知识点是解题关键.

12.分解因式:x2—3%=.

【答案】x(x-3)

【解析】

【详解】直接提公因式x即可,即原式=x(x-3).

13.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红

球的概率为.

3

【答案】j

O

【解析】

【分析】用红球的个数除以球的总个数即可.

【详解】解:从袋中任意摸出一个球有8种等可能结果,其中摸出的小球是红球的有3种结果,

所以从袋中任意摸出一个球是红球的概率为9,

8

故答案为:g3.

8

【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数+

所有可能出现的结果数.

14.抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,AC,8。分别与。。相

切于点C,D,延长AC,8。交于点尸.若NP=120。,的半径为6cm,则图中的长为

cm.(结果保留万)

【答案】2%

【解析】

【分析】连接OC、0D,利用切线的性质得到NOCP=NO0P=9O°,根据四边形的内角和求得

zcor>=6o°,再利用弧长公式求得答案.

【详解】连接OC、0D,

•.•AC,8。分别与。。相切于点C,D,

:.NOCP=NODP=90。,

•:NP=120°,ZOCP+ZODP+ZP+ZCOD=360°,

ZCOD=60°,

二CD的长二G?go=](。机),

故答案为:2%.

【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及

弧长的计算公式是解题的关键.

(\I\

15.在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点称为点4的“倒数

点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=—(x>0)的图象与DE交于点A.若

点B是点A的“倒数点”,且点8在矩形OCDE的一边上,则AOBC的面积为.

【分析】根据题意,点B不可能在坐标轴上,可对点3进行讨论分析:①当点B在边OE上时;②当点8

在边CQ上时;分别求出点B的坐标,然后求出AOBC的面积即可.

【详解】解:根据题意,

(II)

:点B称为点A(x,y)的“倒数点”,

Jy)

,xh(),yw。,

・,•点B不可能在坐标轴上;

•・•点A在函数y=^(x>0)的图像上,

设点A为(%,—),则点B为(一不),

,:点、C为(3,0),

OC=3,

①当点B在边OE上时;

点A与点B都在边OE上,

.•.点A与点B的纵坐标相同,

2x

即一=—,解得:x=2,

x2

经检验,x=2是原分式方程的解;

•••点B为g,l),

13

AOBC的面积为:S=-x3xl=-

22;

②当点B在边CD上时;

点B与点C的横坐标相同,

——3,解得:x――,

x3

经检验,X=;是原分式方程的解;

...点B为(3,,),

6

AOBC的面积为:S=~x3x—=—;

264

13

故答案为::或一.

42

【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关

键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.

16.如图,在矩形ABCO中,点£在边AB上,△3EC与△正。关于直线EC对称,点8的对称点F在

边AO上,G为CO中点,连结BG分别与CE,C户交于M,N两点,若BM=BE,MG=1,则BN的

长为,sinNAFE的值为—

【答案】(1).2(2),夜-1

【解析】

【分析】由△BEC与△EEC关于直线EC对称,矩形A3CD,证明ABEC丝AFEC,再证明ABCN冬KFD,

可得BN=CD,再求解8=2,即可得BN的长;先证明AAFESACBG,可得:—,设

CGBG

BM=x,则BE=BM=FE=x,BG=x+l,AE=2—x,再列方程,求解乂即可得到答案.

【详解】解:ABEC与&FEC关于直线EC对称,矩形ABCD,

“BEC知FEC,ZABC=ZADC=ZBCD=90°,

ZEBC=ZEFC=90°,NBEC=ZFEC,BE=FE,BC=FC,

BM=BE,

ZBEM=ZBME,

NFEC=NBME,

:.EFUMN,

:"BNC=NEFC=90。,

NBNC=NFDC=90。,

-,-ZBCD=90°,

ZNBC+NBCN=90°=ZBCN+ZDCF,

NNBC=ZDCF,

:.ABCN'CFD,

BN=CD,

矩形ABC。,

AB//CD,AD//BC,

:.ZBEM=ZGCM,

ZBEM=ZBME=NCMG,MG=1,G为CO的中点,

NGMC=NGCM,

:.CG=MG=1,CD=2,

..BN=2.

如四,,••BM=BE=FE,MN〃EF,四边形A8CD都是矩形,

AB=CD,AD//BC,NA=ZBCG=90°,ZAEF=NABG,

ZAFE+ZAEF=90°=ZABG+ZCBG,

ZAFE=NCBG,

二.△AFESACBG,

.AEEF

设BM=x,则BE=BM=FE=x,BG=x+l,AE=2—尤,

2-xx

・•----=-----,

1x+1

解得:X=±JI,

经检验:x=±亚是原方程的根,但*=-拒不合题意,舍去,

AE=2-&EF=6,

.■AE2-0r~

・.sinZ-AFE==—7=—=—1・

EFV2

故答案为:2,72-1.

【点睛】本题考查的是矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数

的应用,分式方程的解法,掌握以上知识是解题的关键.

三、解答题(本大题有8小题,共80分)

17.(1)计算:(l+a)(l-a)+(a+3)2.

⑵+1<9①

(2)解不等式组:,八

3-x<0②

【答案】(1)6。+10;(2)3Vx<4.

【解析】

【分析】(1)根据平方差公式和完全平方公式进行多项式乘法,再将结果合并同类项即可;

(2)先解出①,得到x<4,再解出②,得到x»3,由大小小大中间取得到解集.

【详解】解:(1)原式=1一。2+。2+6。+9

=6。+1().

(2)解不等式①,得x<4,

解不等式②,得xN3,

所以原不等式组的解是3Vx<4.

【点睛】本题主要考查了整式的混合运算和解不等式组,关键在于平方差公式、完全平方公式以及不等式

基本性质的应用,特别注意不等式的基本性质3,不等号的方向要改变.

18.如图是由边长为1的小正方形构成的6x4的网格,点A,B均在格点上.

(1)在图I中画出以A3为边且周长为无理数的oABC。,且点C和点。均在格点上(画出一个即可).

(2)在图2中画出以A3为对角线的正方形且点E和点尸均在格点上.

【答案】(1)见解析;(2)见解析

【解析】

【分析】(1)根据题意,只要使得A3的邻边AO的长是无理数即可;

(2)如图,取格点E、F,连接EF,则EF与43互相垂直平分且相等,根据正方形的判定方法,则四边形

为所作.

【详解】.解:(1)如图四边形ABC。即为所作,答案不唯一.

(2)如图,四边形隹所即为所求作的正方形.

【点睛】本题考查了在网格中作特殊四边形,熟练掌握平行四边形和正方形的判定方法是准确作图的关键.

19.如图,二次函数y=(x-l)(x-a)(。为常数)的图象的对称轴为直线尤=2.

(1)求a的值.

(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.

【答案】(1)。=3;(2)y=%2-4x

【解析】

【分析】(1)把二次函数化为一般式,再利用对称轴:x=-g,列方程解方程即可得到答案;

2a

(2)由(1)得:二次函数的解析式为:y=x2-4x+3,再结合平移后抛物线过原点,则。=0,从而可

得平移方式及平移后的解析式.

【详解】解:(1)=(x-l)(x-a)=x2-(1+a)x+a.

•.•图象的对称轴为直线x=2,

Q+1

2,

2

a=3.

(2)':a=3,

二次函数的表达式为y=f-4%+3,

.••抛物线向下平移3个单位后经过原点,

平移后图象所对应的二次函数的表达式为y=/一4%.

【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,二次函数图像的平移,

熟练掌握二次函数的基础知识是解题的关键.

20.图1表示的是某书店今年1〜5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月

营业额占书店当月营业总额的百分比情况.若该书店1〜5月的营业总额一共是182万元,观察图1、图2,

解答下列向题:

(1)求该书店4月份的营业总额,并补全条形统计图.

(2)求5月份“党史”类书籍的营业额.

(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.

【答案】(1)45万元,见解析;(2)10.5万元;(3)5月份党史类书籍的营业额最高,见解析

【解析】

【分析】(1)用该书店1〜5月的营业总额减去其它4个月的营业总额即可求出该书店4月份的营业总额,

进而可补全统计图;

(2)用5月份的营业总额乘以折线统计图中其所占百分比即可;

(3)结合两个统计图可以发现:在5个月中4、5月份的营业总额最高,且卜3月份的营业总额以及“党史”

类书籍的营业额占当月营业总额的百分比都低于4、5月份,故只需比较4、5月份“党史”类书籍的营业额即

可.

【详解】解:(1)182-(30+40+25+42)=45(万元),

答:该书店4月份的营业总额为45万元.

补全条形统计图:

某书店各月营业总额条形统计图

答:5月份“党史”类书籍的营业额为10.5万元.

(3)4月份“党史”类书籍的营业额为:45x20%=9(万元).

V10.5>9,且1~3月份的营业总额以及“党史”类书籍的营业额占当月营业总额的百分比都低于4、5月份,

A5月份“党史”类书籍的营业额最高.

【点睛】本题考查了条形统计图和折线统计图,属于常考题型,读懂图象信息、熟练应用所学知识是解题

的关键.

21.我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞

骨所成的角44C,且AB=AC,从而保证伞圈。能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,

此时伞圈D已滑动到点QC的位置,且A,B,三点共线,AD'=40cm中点,当ZR4c=140°

时,伞完全张开.

(1)求AB的长.

(2)当伞从完全张开到完全收拢,求伞圈。沿着伞柄向下滑动的距离.(参考数据:

sin70°«094,cos70°«0.34,tan70°®2.75)

【答案】(1)20cm;(2)26.4cm

【解析】

【分析】(1)根据中点的性质即可求得;

(2)过点B作于点E.根据等腰三角形的三线合一的性质求出4)=2他.利用角平分线的性质

求出/8AE的度数,再利用三角函数求出AE,即可得到答案.

【详解】解:(1)为中点,

AB=-AD',

2

:AD'=40,

:.AB=20(cm).

(2)如图,过点8作BE_LAT>于点E.

AB=BD,

:.AD=2AE.

•・・AP平分ZBAC.ZBAC=140°,

NBAE=L/BAC=70。.

2

在RfAABE中,AB=20,

AE-ABcos70°«20x0.34=6.8,

,AD=2AE=13.6.

•••AD'=40,

.•.40—13.6=26.4(cm),

伞圈Z)沿着伞柄向下滑动的距离为26.4cm.

【点睛】此题考查的是解直角三角形的实际应用,等腰三角形的三线合一的性质,线段中点的性质,角平

分线的性质,正确构建直角三角形解决问题是解题的关键.

22.某通讯公司就手机流量套餐推出三种方案,如下表:

/方案B方案C方案

每月基本费用(元)2056266

每月免费使用流量(兆)1024m无限

超出后每兆收费(元)nn

A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.

(1)请直接写出m,〃的值.

(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)

之间的函数关系式.

(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?

【答案】(1)m=3072,«=0.3;(2)y=0.3x-287.2(x>1024);(3)当每月使用的流量超过3772兆

时,选择C方案最划算

【解析】

【分析】(1)机值可以从图象上直接读取,〃的值可以根据方案A和方案8的费用差和流量差相除求得;

(2)直接运用待定系数法求解即可:

(3)计算出方案C的图象与方案B的图象的交点表示的数值即可求解.

【详解】解:(1)加=3072,

〃=56"。.J.

1144-1024

(2)设函数表达式为丁=履+伏女工0),

把(1024,20),(1144,56)代入y=fcv+〃,得

20=1024%+8

56=1144%+/?’

7=0.3

解得《

。=一287.2'

关于x的函数表达式y=0.3x-287.2(%>1024).

(注:x的取值范围对考生不作要求)

(3)3072+(266-56)+0.3=3772(兆).

由图象得,当每月使用的流量超过3772兆时,选择C方案最划算.

【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结

合的思想解答.

23.【证明体验】

(1)如图1,AO为△A6C的角平分线,/4。。=6()。,点£在43上,AE=AC.求证:DE平分NADB.

图1图2图3

【思考探究】

(2)如图2,在(1)的条件下,尸为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,

求的长.

【拓展延伸】

(3)如图3,在四边形A3CD中,对角线4。平分/84。,/8。4=2/。,4,点七在4?上,

4EDC=ZABC,若3c=5,。。=2石,AQ=2AE,求AC的长.

916

【答案】(1)见解析;(2)—;(3)一

23

【解析】

【分析】(1)根据SAS证明^EAD^/\CAD,进而即可得到结论;

(2)先证明AEBOSAGCD,得空=《与,进而即可求解;

CDDG

(3)在A8上取一点F,使得A尸=4),连结CP,可得AAFC四△AOC,从而得ADCES^BCF,可

得3-=4,NCED=NBFC,CE=4,最后证明△E4£>SAD4C,即可求解.

BCCF

【详解】解:(1)•••AO平分N54C,

:.ZEAD=ZCAD,

•:AE^AC,AD^AD,

:.^EAD^CAD(SAS),

:.ZADE=ZADC=60。,

:.ZEDB=180°-ZADE-ZADC=60°,

:.NBDE=/ADE,即OE平分ZA£>5;

(2)FB=FC,

:.NEBD=NGCD,

':ZBDE=NGDC=60°,

△£BZ)COAGCZ),

.BDDE

''~CD~~DG'

':^EAD^^CAD,

DE=DC=3.

•••DG=2,

(3)如图,在AB上取一点F,使得AE=A£>,连结CF.

Ei

BD

,:AC平分

ZE4C=ZZMC

AC=AC,

:.^AFC^ADC{SAS),

CF=CD,ZACF=ZACD,ZAFC=ZADC.

•:ZACF+NBCF=ZACB=2ZACD,

ZDCE=ZBCF.

,:ZEDC=ZFBC,

ADCESABCF,

,NCED=ZBFC.

BCCF

*■,BC=5,CF=CD=2也,

:.CE=4.

■:ZAED=180°—ZCED=1800-ZBFC=ZAFC=ZADC,

又:/EAD=/DAC,

^EAD^^DAC

.EAADi

"AD-AC-2)

AC=4AE,

:.AC=-CE=—.

33

【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,添加辅助线,构造全等三角

形和相似三角形,是解题的关键.

24.如图1,四边形ABCD内接于0。,BD为直径,AO上存在点E,满足AE=C。,连结BE并延长

交C£)的延长线于点F,BE与AD交于点G.

(1)若/05C=a,请用含a的代数式表列NAGB.

(2)如图2,连结C£,CE=BG.求证;EF=DG.

(3)如图3,在(2)的条件下,连结CG,AG=2.

①若tan/AOB=",求△FGD的周长.

2

②求CG的最小值.

【答案】(1)44GB=90°-。;(2)见解析;(3)①唱互;②百

【解析】

【分析】(1)利用圆周角定理求得N84Z>=90°,再根据AE=C£),求得NABG=NZMC=2,即可得

到答案;

(2)由N3EC=NBDC=90°—a,得到NBEC=NAG3,从而推出NCEE=N6GO,证得

^CFE^BDG(ASA),由此得到结论;

(3)①连结DE.利用已知求出AB=—AD=y/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论