福建省福州市第十九中学2022年九年级数学第一学期期末质量检测模拟试题含解析_第1页
福建省福州市第十九中学2022年九年级数学第一学期期末质量检测模拟试题含解析_第2页
福建省福州市第十九中学2022年九年级数学第一学期期末质量检测模拟试题含解析_第3页
福建省福州市第十九中学2022年九年级数学第一学期期末质量检测模拟试题含解析_第4页
福建省福州市第十九中学2022年九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,点在边上,连接,点在线段上,,且交于点,,且交于点,则下列结论错误的是()A. B. C. D.2.将二次函数的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是()A. B.C. D.3.如图,在△ABC中,AD⊥BC交BC于点D,AD=BD,若AB=,tanC=,则BC=()A.8 B. C.7 D.4.如图所示,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC平行于x轴,△ABC的面积为S,则()A.S=1 B.S=2 C.1<S<2 D.S>25.下列成语描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.水涨船高6.第一中学九年级有340名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是()A.至少有两人生日相同 B.不可能有两人生日相同C.可能有两人生日相同,且可能性较大 D.可能有两人生日相同,但可能性较小7.如图,我国传统文化中的“福禄寿喜”图由四个图案构成,这四个图案中是中心对称图形的是()A. B. C. D.8.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.59.关于x的一元二次方程x2﹣mx+(m﹣2)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.如图1,图2是甲、乙两位同学设置的“数值转换机”的示意图,若输入的,则输出的结果分别为()A.9,23 B.23,9 C.9,29 D.29,911.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸12.一元二次方程有一根为零,则的值为()A. B. C.或 D.或二、填空题(每题4分,共24分)13.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°14.阅读材料:一元二次方程的两个根是-2,3,画出二次函数的图象如图,位于轴上方的图象上点的纵坐标满足,所以不等式点的横坐标的取值范围是,则不等式解是.仿照例子,运用上面的方法解不等式的解是___________.15.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是_____.16.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于_____(结果保留根号).17.Q是半径为3的⊙O上一点,点P与圆心O的距离OP=5,则PQ长的最小值是_____.18.已知,关于原点对称,则__________.三、解答题(共78分)19.(8分)根据要求完成下列题目:

(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.20.(8分)某商场经营一种新上市的文具,进价为元/件,试营销阶段发现:当销售单价为元/件时,每天的销售量是件;销售单价每上涨一元,每天的销售量就减少件,(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?21.(8分)如图,在□ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.22.(10分)某司机驾驶汽车从甲地去乙地,他以的平均速度用到达目的地.(1)当他按原路匀速返回时,汽车的速度与时间有怎样的函数关系?(2)如果该司机返回到甲地的时间不超过,那么返程时的平均速度不能小于多少?23.(10分)已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.24.(10分)某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量(件)与销售单价(元/件)的关系如下表:15202530550500450400设这种产品在这段时间内的销售利润为(元),解答下列问题:(1)如是的一次函数,求与的函数关系式;(2)求销售利润与销售单价之间的函数关系式;(3)求当为何值时,的值最大?最大是多少?25.(12分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.26.如图,抛物线与坐标轴分别交于,,三点,连接,.(1)直接写出,,三点的坐标;(2)点是线段上一点(不与,重合),过点作轴的垂线交抛物线于点,连接.若点关于直线的对称点恰好在轴上,求出点的坐标;(3)在平面内是否存在一点,使关于点的对称(点,,分别是点,,的对称点)恰好有两个顶点落在该抛物线上?若存在,求出点的坐标;若不存在,说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据平行线截得的线段对应成比例以及相似三角形的性质定理,逐一判断选项,即可得到答案.【详解】∵,,∴,∴A正确,∵,∴,∴B正确,∵∆DFG~∆DCA,∆AEG~∆ABD,∴,,∴,∴C错误,∵,,∴,∴D正确,故选C.【点睛】本题主要考查平行线截线段定理以及相似三角形的性质定理,掌握平行线截得的线段对应成比例是解题的关键.2、C【分析】根据平移的规律进行求解即可得答案.【详解】将二次函数的图象向右平移2个单位,可得:再向下平移3个单位,可得:故答案为:C.【点睛】本题考查了平移的规律:上加下减,最加右减,注意上下平移动括号外的,左右平移动括号里的.3、C【分析】证出△ABD是等腰直角三角形,得出AD=BD=AB=4,由三角函数定义求出CD=3,即可得出答案.【详解】解:交于点,,是等腰直角三角形,,,,;故选:.【点睛】本题考查了解直角三角形、等腰直角三角形的性质以及三角函数定义;熟练掌握等腰直角三角形的性质和三角函数定义是解题的关键.4、B【分析】设点A(m,),则根据对称的性质和垂直的特点,可以表示出B、C的坐标,根据坐标关系得出BC、AC的长,从而得出△ABC的面积.【详解】设点A(m,)∵A、B关于原点对称∴B(-m,)∴C(m,)∴AC=,BC=2m∴=2故选:B【点睛】本题考查反比例函数和关于原点对称点的求解,解题关键是表示出A、B、C的坐标,从而得出△ABC的面积.5、A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【分析】依据可能性的大小的概念对各选项进行逐一分析即可.【详解】A.因为一年有365天而某学校只有340人,所以至少有两名学生生日相同是随机事件.故本选项错误;B.两人生日相同是随机事件,故本选项错误;C.因为320365=6473>50%,所以可能性较大.正确;D.由C可知,可能性较大,故本选项错误.故选:C.【点睛】本题考查了可能性的大小,也考查了我们对常识的了解情况.7、B【解析】根据中心对称图形的概念逐一判断即可.【详解】A.不是中心对称图形,故该选项不符合题意,B.是中心对称图形,符合题意,C.不是中心对称图形,故该选项不符合题意,D.不是中心对称图形,故该选项不符合题意,故选:B.【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.9、A【解析】试题解析:△=b2-4ac=m2-4(m-2)=m2-4m+8=(m-2)2+4>0,所以方程有两个不相等的实数根.故选:A.点睛:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10、D【分析】根据题意分别把m=-2代入甲、乙两位同学设置的“数值转换机”求值即可.【详解】解:甲的“数值转换机”:当时,(-2)2+52=4+25=29,乙的“数值转换机”:当时,[(-2)+5]2=32=9,故选D.【点睛】本题考查了求代数式的值.解题关键是根据数值转换机的图示分清运算顺序.11、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.12、B【分析】把代入一元二次方程,求出的值,然后结合一元二次方程的定义,即可得到答案.【详解】解:∵一元二次方程有一根为零,∴把代入一元二次方程,则,解得:,∵,∴,∴;故选:B.【点睛】本题考查了一元二次方程的解,以及一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法,正确求出的值.二、填空题(每题4分,共24分)13、B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.14、【分析】根据题意可先求出一元二次方程的两个根是1,3,画出二次函数的图象,位于轴上方的图象上点的纵坐标满足,即可得解.【详解】解:根据题意可得出一元二次方程的两个根是1,3,画出二次函数的图象如下图,因此,不等式的解是.故答案为:.【点睛】本题考查的知识点是二次函数与不等式的解,理解题意,找出求解的步骤是解此题的关键.15、2.【分析】在中,根据直角三角形的边角关系求出CD,根据勾股定理求出BD,在在中,再求出AB即可.【详解】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴,∴,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴,故答案为:2.【点睛】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键.16、【分析】如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,根据等边三角形的性质可求出AB的长,根据相似三角形的性质可得△ADE是等边三角形,可得出AE的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH=HF=x,利用∠EFH的正确可用x表示出EH的长,根据AE=EH+AH列方程可求出x的值,根据三角形面积公式即可得答案.【详解】如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,∵△ABC是面积为的等边三角形,CM⊥AB,∴×AB×CM=,∠BCM=30°,BM=AB,BC=AB,∴CM==,∴×AB×=,解得:AB=2,(负值舍去)∵△ABC∽△ADE,△ABC是等边三角形,∴△ADE是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF=∠BAD=45°,∵FH⊥AE,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=x.∵AB=2AD,AD=AE,∴AE=AB=1,∴x+x=1,解得x=.∴S△AEF=×1×=.故答案为:.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.17、1【分析】根据点与圆的位置关系即可得到结论.【详解】解:∵Q是半径为3的⊙O上一点,点P与圆心O的距离OP=5,根据三角形的三边关系,PQ≥OP-OQ(注:当O、P、Q共线时,取等号)∴PQ长的最小值=5-3=1,故答案为:1.【点睛】此题考查的是点与圆的位置关系,掌握三角形的三边关系求最值是解决此题的关键.18、1【分析】根据点(x,y)关于原点对称的点是(-x,-y)列出方程,解出a,b的值代入计算即可.【详解】解:∵,关于原点对称∴,解得,∴,故答案为:1.【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x,y)关于原点对称的点是(-x,-y)是解题的关键.三、解答题(共78分)19、6,根据三视图的基本画法,画出其基本三视图【分析】试题分析:小正方形的数=3+2+1=6

考点:简单图形三视图的画法点评:三视图的图形画法是常考知识点,需要考生在熟练把握的基础上画出各种图形的三视图【详解】20、(1)w=-10x2+700x-10000;(2)35元【分析】(1)利用每件利润×销量=总利润,进而得出w与x的函数关系式;

(2)利用配方法求出二次函数最值进而得出答案.【详解】解:(1)由题意可得:w=(x-20)[250-10(x-25)]

=-10(x-20)(x-50)

=-10x2+700x-10000;

(2)∵w=-10x2+700x-10000=-10(x-35)2+2250,

∴当x=35时,w取到最大值2250,

即销售单价为35元时,每天销售利润最大,最大利润为2250元.【点睛】此题主要考查了二次函数的应用,根据销量与售价之间的关系得出函数关系式是解题关键.21、(1)证明见解析;(2)⊙O的半径为【分析】(1)连接OB,根据题意求证OB⊥AD,利用垂径定理求证;(2)根据垂径定理和勾股定理求解.【详解】解:(1)连接OB,交AD于点E.∵BC是⊙O的切线,切点为B,∴OB⊥BC.∴∠OBC=90°∵四边形ABCD是平行四边形∴AD//BC∴∠OED=∠OBC=90°∴OE⊥AD又∵OE过圆心O∴(2)∵OE⊥AD,OE过圆心O∴AE=AD=4在Rt△ABE中,∠AEB=90°,BE==3,设⊙O的半径为r,则OE=r-3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r-3)2+42=r2∴r=∴⊙O的半径为【点睛】掌握垂径定理和勾股定理是本题的解题关键.22、(1);(2).【分析】(1)利用路程=平均速度×时间,进而得出汽车的速度v与时间t的函数关系;

(2)结合该司机必须在5个小时之内回到甲地,列出不等式进而得出速度最小值.【详解】(1)由题意得,两地路程为,∴汽车的速度与时间的函数关系为;(2)由,得,又由题意知:,∴,∵,∴,∴.答:返程时的平均速度不能小于1.【点睛】本题主要考查了反比例函数的应用,根据路程=平均速度×时间得出函数关系是解题关键.23、(1),;(2)的最大值为1【分析】(1)作辅助线,过点A作AE⊥PB于点E,在Rt△PAE中,已知∠APE,AP的值,根据三角函数可将AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根据勾股定理可将AB的值求出;

求PD的值有两种解法,解法一:可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD≌△P'AB,求PD长即为求P′B的长,在Rt△AP′P中,可将PP′的值求出,在Rt△PP′B中,根据勾股定理可将P′B的值求出;

解法二:过点P作AB的平行线,与DA的延长线交于F,交PB于G,在Rt△AEG中,可求出AG,EG的长,进而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根据勾股定理可将PD的值求出;

(2)将△PAD绕点A顺时针旋转90°,得到△P'AB,PD的最大值即为P'B的最大值,故当P'、P、B三点共线时,P'B取得最大值,根据P'B=PP'+PB可求P'B的最大值,此时∠APB=180°-∠APP'=135°.【详解】(1)①如图,作AE⊥PB于点E,∵△APE中,∠APE=45°,PA=,∴AE=PE=×=1,∵PB=4,∴BE=PB﹣PE=3,在Rt△ABE中,∠AEB=90°,∴AB==.②解法一:如图,因为四边形ABCD为正方形,可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD≌△P'AB,PD=P'B,PA=P'A.∴∠PAP'=90°,∠APP'=45°,∠P'PB=90°∴PP′=PA=2,∴PD=P′B===;解法二:如图,过点P作AB的平行线,与DA的延长线交于F,与DA的延长线交PB于G.在Rt△AEG中,可得AG===,EG=,PG=PE﹣EG=.在Rt△PFG中,可得PF=PG•cos∠FPG=PG•cos∠ABE=,FG=.在Rt△PDF中,可得,PD===.(2)如图所示,将△PAD绕点A顺时针旋转90°得到△P'AB,PD的最大值即为P'B的最大值,∵△P'PB中,P'B<PP'+PB,PP′=PA=2,PB=4,且P、D两点落在直线AB的两侧,∴当P'、P、B三点共线时,P'B取得最大值(如图)此时P'B=PP'+PB=1,即P'B的最大值为1.此时∠APB=180°﹣∠APP'=135度.【点睛】考查综合应用解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力,在解题过程中通过添加辅助线,确定P′B取得最大值时点P′的位置.24、(1);(2);(3)当时,的值最大,最大值为9000元【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【详解】(1)设与的函数关系式为y=kx+b把(15,550)、(20,500)代入得解得∴(2)∵成本为10元,故每件利润为(x-10)∴销售利润(3)=∵-10<0,∴当时,的值最大,最大值为9000元.【点睛】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.25、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论