安徽省安庆望江县联考2022年数学九年级第一学期期末考试模拟试题含解析_第1页
安徽省安庆望江县联考2022年数学九年级第一学期期末考试模拟试题含解析_第2页
安徽省安庆望江县联考2022年数学九年级第一学期期末考试模拟试题含解析_第3页
安徽省安庆望江县联考2022年数学九年级第一学期期末考试模拟试题含解析_第4页
安徽省安庆望江县联考2022年数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下图中,不是中心对称图形的是()A. B. C. D.2.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)3.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是()A. B. C. D.4.如图,在中,,D为AC上一点,连接BD,且,则DC长为()A.2 B. C. D.55.如图所示,在中,,,,则长为()A. B. C. D.6.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定7.如图,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣128.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位 B.向上平移3个单位C.向右平移3个单位 D.向下平移3个单位9.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC.若S△BDE:S△ADE=1:2.则S△DOE:S△AOC的值为()A. B. C. D.10.(湖南省娄底市九年级中考一模数学试卷)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.99二、填空题(每小题3分,共24分)11.在矩形中,,,绕点顺时针旋转到,连接,则________.12.若两个相似三角形的面积之比为1:4,则它们对应角的角平分线之比为___.13.如图,转动转盘一次,当转盘停止后(指针落在线上重转),指针停留的区域中的数字为偶数的概率是___________.14.如图,在扇形OAB中,∠AOB=90°,半径OA=1.将扇形OAB沿过点B的直线折叠.点O恰好落在延长线上点D处,折痕交OA于点C,整个阴影部分的面积_____.15.某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为______.16.如图所示,已知中,,边上的高,为上一点,,交于点,交于点,设点到边的距离为.则的面积关于的函数图象大致为__________.17.已知2是关于的一元二次方程的一个根,则该方程的另一个根是________.18.已知某个正六边形的周长为,则这个正六边形的边心距是__________.三、解答题(共66分)19.(10分)如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.(1)在平面直角坐标系中,若点.①在的点中,是线段的“限距点”的是;②点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围20.(6分)关于的一元二次方程有两个不等实根,.(1)求实数的取值范围;(2)若方程两实根,满足,求的值。21.(6分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.22.(8分)如图,点是的内心,的延长线交于点,交的外接圆于点,连接,过点作直线,使;(1)求证:直线是的切线;(2)若,,求.23.(8分)问题提出:如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.a.每次只能移动1个金属片;b.较大的金属片不能放在较小的金属片上面.把个金属片从1号针移到3号针,最少移动多少次?问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:a.把第1个金属片从1号针移到2号针;b.把第2个金属片从1号针移到3号针;c.把第1个金属片从2号针移到3号针.用符号表示为:,,.共移动了3次.探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:a.把上面两个金属片从1号针移到2号针;b.把第3个金属片从1号针移到3号针;c.把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为:,,,,,,.共移动了7次.(1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.(2)探究五:根据上面的规律你可以发现当时,需要移动________次.(3)探究六:把个金属片从1号针移到3号针,最少移动________次.(4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么与的关系是__________.24.(8分)已知是上一点,.(Ⅰ)如图①,过点作的切线,与的延长线交于点,求的大小及的长;(Ⅱ)如图②,为上一点,延长线与交于点,若,求的大小及的长.25.(10分)如图,在平面直角坐标系中,已知矩形的顶点,过点的双曲线与矩形的边交于点.(1)求双曲线的解析式以及点的坐标;.(2)若点是抛物线的顶点;①当双曲线过点时,求顶点的坐标;②直接写出当抛物线过点时,该抛物线与矩形公共点的个数以及此时的值.26.(10分)已知:在同一平面直角坐标系中,一次函数与二次函数的图象交于点.(1)求,的值;(2)求二次函数图象的对称轴和顶点坐标.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、是中心对称图形,故此选项不合题意;

B、是中心对称图形,故此选项不合题意;

C、是中心对称图形,故此选项不合题意;

D、不是中心对称图形,故此选项符合题意;

故选:D.【点睛】考查了中心对称图形,关键是掌握中心对称图形定义.2、D【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.3、D【分析】过点D作DE∥AB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【详解】过点D作DE∥AB交AO于点E∵DE∥AB∴∵∴∴∴∵点D在上∴∵∴故选D【点睛】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.4、C【分析】利用等腰三角形的性质得出∠ABC=∠C=∠BDC,可判定△ABC∽△BCD,利用相似三角形对应边成比例即可求出DC的长.【详解】∵AB=AC=6∴∠ABC=∠C∵BD=BC=4∴∠C=∠BDC∴∠ABC=∠BCD,∠ACB=∠BDC∴△ABC∽△BCD∴∴故选C.【点睛】本题考查了等腰三角形的性质,相似三角形的判定与性质,解题的关键是找到两组对应角相等判定相似三角形.5、B【分析】先根据同角的三角函数值的关系得出,解出AC=5,再根据勾股定理得出AB的值.【详解】在中,,,,即.又AC=5===3.故选B.【点睛】本题考查了三角函数的值,熟练掌握同角的三角函数的关系是解题的关键.6、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.7、D【分析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,BC•EO=AB•CO,求得ab的值即可.【详解】设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选D.考点:反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例;数形结合.8、B【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.9、B【分析】依次证明和,利用相似三角形的性质解题.【详解】∵,

∴,

∴,

∵∥,∴,∴,

∵∥,∴,∴,

故选:B.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10、B【解析】现将数字“69”旋转180°,得到的数字是:69,故选B.二、填空题(每小题3分,共24分)11、【分析】根据勾股定理求出BD,再根据等腰直角三角形的性质,BF=BD计算即可.【详解】解:∵四边形ABCD是矩形,

∴AD=BC=8,∠A=90°,

∵AB=6,

∴BD===10,

∵△BEF是由△ABD旋转得到,

∴△BDF是等腰直角三角形,

∴DF=BD=10,

故答案为10.【点睛】本题考查旋转的性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用勾股定理解决问题,属于中考常考题型.12、1:1【分析】根据相似三角形的性质进行分析即可得到答案.【详解】解:∵两个相似三角形的面积比为1:4,∴它们对应角的角平分线之比为1:=1:1,故答案为:1:1.【点睛】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(1)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.13、【分析】由1占圆,2与3占,可得把数字为1的扇形可以平分成2部分,即可得转动转盘一次共有4种等可能的结果,分别是1,1,2,3;然后由概率公式即可求得.【详解】解:占圆,2与3占,把数字为1的扇形可以平分成2部分,转动转盘一次共有4种等可能的结果,分别是1,1,2,3;当转盘停止后,指针指向的数字为偶数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率所求情况数与总情况数之比.14、9π﹣12.【详解】解:连接OD交BC于点E,∠AOB=90°,∴扇形的面积==9π,由翻折的性质可知:OE=DE=3,在Rt△OBE中,根据特殊锐角三角函数值可知∠OBC=30°,在Rt△COB中,CO=2,∴△COB的面积=1,∴阴影部分的面积为=9π﹣12.故答案为9π﹣12.【点睛】本题考查翻折变换(折叠问题)及扇形面积的计算,掌握图形之间的面积关系是本题的解题关键.15、20m【解析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.16、抛物线y=-x2+6x.(0<x<6)的部分.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,∵∴△AEF∽△ABC∴即,∴y=×2(6-x)x=-x2+6x.(0<x<6)∴该函数图象是抛物线y=-x2+6x.(0<x<6)的部分.故答案为:抛物线y=-x2+6x.(0<x<6)的部分.【点睛】此题考查相似三角形的判定和性质,根据几何图形的性质确定函数的图象能力.要能根据函数解析式及其自变量的取值范围分析得出所对应的函数图像的类型和所需要的条件,结合实际意义分析得解.17、-1.【解析】设方程的另一个根为,由韦达定理可得:,即,解得.点睛:本题主要考查一元二次方程根与系数的关系,解决本题的关键是要熟练掌握一元二次方程根与系数的关系.18、【分析】首先得出正六边形的边长,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】解:如图作正六边形外接圆,连接OA,作OM⊥AB垂足为M,得到∠AOM=30°∵圆内接正六边形ABCDEF的周长为6∴AB=1则AM=,OA=1因而OM=OA·=正六边形的边心距是【点睛】此题主要考查了正多边形和圆,正确掌握正多边形的性质是解题的关键.三、解答题(共66分)19、(1)①E;②;(2).【分析】(1)①分别计算出C、D、E到A、B的距离,根据“限距点”的含义即可判定;②画出图形,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,据此可解;(2)画出图形,可知当时,直线上存在线段AB的“限距点”,据此可解.【详解】(1)①计算可知AC=BC=,DA=,DB=,EA=EB=2,设点为线段上任意一点,则,,,∴,∴点E为线段AB的“限距点”.故答案是:E.②如图,作PF⊥x轴于F,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,∵直线与x轴交于点A(-1,0),交y轴于点H(0,),∴∠OAH=30°,∴当AP=2时,AF=,∴此时点P的横坐标为-1,∴点P横坐标的取值范围是;(2)如图,直线与x轴交于M,AB交x轴于G,∵点A(t,1)、B(t,-1),直线与x轴的交点M(-1,0),与y轴的交点C(0,),∴,∴∠NMO=30°,①当圆B与直线相切于点N,连接BN,连接BA并延长与直线交于D(t,)点,∵∠NBD=∠NMO=30°,∴,即,解得:;②当圆A与直线相切时,同理可知:∴.【点睛】本题考查了一次函数、圆的性质、两点间的距离公式,是综合性较强的题目,通过做此题培养了学生的阅读能力、数形结合的能力,此题是一道非常好、比较典型的题目.20、(1);(2).【分析】(1)根据∆>0列式求解即可;(2)先求出x1+x2与x1·x2的值,然后代入求解即可.【详解】(1)原方程有两个不相等的实数根,,解得:.(2)由根与系数的关系得,.,,解得:或,又,.【点睛】本题考查了一元二次方程根的判别式,以及一元二次方程根与系数的关系,熟练掌握各知识点是解答本题的关键.21、(1)画图见解析,A1(﹣1,4),B1(1,4);(2).【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.【详解】解:(1)所求作△A1B1C如图所示:由A(4,1)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC=,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=+×1×2=+1.【点睛】本题考查作图-旋转变换;扇形面积的计算.22、(1)证明见解析;(2).【分析】(1)首先根据三角形内心的性质得出,然后利用等弧对等角进行等量转换,得出,最后利用垂径定理即可得证;(2)利用相似三角形的判定以及性质即可得解.【详解】(1)证明:如图所示,连接,∵点是的内心,∴,∴,∴,又∵,,∴,∴,∴,又∵为半径,∴直线是的切线;(2)∵,∴,又∵(公共角),∴,∴,即,∵,∴∴∴.【点睛】此题主要考查圆的切线的证明以及相似三角形的判定与性质,熟练掌握,即可解题.23、(1)当时,移动顺序为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2),(3),(4)【分析】根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.【详解】解:(1)当时,把上面3个金属片作为一个整体,移动的顺序是:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).故答案为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2)解:设是把n个盘子从1柱移到3柱过程中移动盘子之最少次数n=1时,f(1)=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱,大盘从1柱→3柱,小盘从2柱→1柱,中盘从2柱→3柱,小盘从1柱→3柱,完成.[用种方法把中、小两盘移到2柱,大盘3柱;再用种方法把中、小两盘从2柱3柱,完成],故答案为:(3)由(2)知:故答案为:(4)故答案为:【点睛】本题考查了归纳推理、图形变化的规律问题,根据题目信息,得出移动次数分成两段计数,利用盘子少一个时的移动次数移动到2柱,把最大的盘子移动到3柱,然后再用同样的次数从2柱移动到3柱,从而完成移动过程是解题的关键,本题对阅读并理解题目信息的能力要求比较高.24、(Ⅰ),PA=4;(Ⅱ),【分析】(Ⅰ)易得△OAC是等边三角形即∠AOC=60°,又由PC是○O的切线故PC⊥OC,即∠OCP=90°可得∠P的度数,由OC=4可得PA的长度(Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=AO=CO,在Rt△DOC中易得CD的长,即可求解【详解】解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.∴∠AOC=60°.∵PC是○O的切线,OC为○O的半径,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论