版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在反比例函数的图像上有三点、、,若,而,则下列各式正确的是()A. B.C. D.3.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS4.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A. B. C. D.5.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.66.二次函数的部分图象如图所示,由图象可知方程的根是()A. B.C. D.7.若抛物线经过点,则的值在().A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间8.如图,在中,,将绕点旋转到'的位置,使得,则的大小为()A. B. C. D.9.已知,是方程的两个实数根,则的值是()A.2023 B.2021 C.2020 D.201910.数据4,3,5,3,6,3,4的众数和中位数是()A.3,4 B.3,5 C.4,3 D.4,5二、填空题(每小题3分,共24分)11.请将二次函数改写的形式为_________________.12.如图,已知点A、B分别在反比例函数,的图象上,且,则的值为______.13.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.14.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是______.15.如图,矩形纸片中,,,将纸片沿折叠,使点落在边上的处,折痕分别交边、于点、,且.再将纸片沿折叠,使点落在线段上的处,折痕交边于点.连接,则的长是______.16.已知关于x的一元二次方程(a-1)x2-x+a2-1=0的一个根是0,那么a的值为.17.某扇形的弧长为πcm,面积为3πcm2,则该扇形的半径为_____cm18.已知是关于的方程的一个根,则___________.三、解答题(共66分)19.(10分)阅读下面材料,完成(1),(2)两题数学课上,老师出示了这样一道题:如图1,在中,,,点为上一点,且满足,为上一点,,延长交于,求的值.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过构造全等三角形,经过进一步推理,就可以求出的值.”……老师:“把原题条件中的‘’,改为‘’其他条件不变(如图2),也可以求出的值.(1)在图1中,①求证:;②求出的值;(2)如图2,若,直接写出的值(用含的代数式表示).20.(6分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=°时,四边形BFDE是正方形.21.(6分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用4800元购进A、B两种粽子共1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A,B两种粽子的单价;(2)若计划用不超过8000元的资金再次购进A,B两种粽子共1800个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?22.(8分)如图,已知△ABC,∠A=60°,AB=6,AC=1.(1)用尺规作△ABC的外接圆O;(2)求△ABC的外接圆O的半径;(3)求扇形BOC的面积.23.(8分)市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第1次
第2次
第3次
第4次
第5次
第6次
甲
10
9
8
8
10
9
乙
10
10
8
10
7
9
(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.24.(8分)爱好数学的甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字﹣1,0,1且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为p的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为q值,两次结果记为.(1)请你帮他们用树状图或列表法表示所有可能出现的结果;(2)求满足关于x的方程没有实数根的概率.25.(10分)甲、乙、丙、丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)求第一次甲将花传给丁的概率;(2)求经过两次传花,花恰好回到甲手中的概率.26.(10分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.2、A【分析】首先判断反比例函数的比例系数为负数,可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点(x1,y1)和(x1,y1)的纵坐标的大小即可.【详解】∵反比例函数的比例系数为-1<0,∴图象的两个分支在第二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点(x1,y1)、(x1,y1)在第四象限,点(x3,y3)在第二象限,∴y3最大,∵x1>x1,y随x的增大而增大,∴y1>y1,∴y3>y1>y1.故选A.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的1个分支在第二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y随x的增大而增大.3、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【点睛】本题考查科学计算器的使用方法,属基础题.4、B【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=>0,∴对称轴在y轴右侧,故第四个选项错误.故选B.5、C【分析】二次函数y=x2+4x+n的图象与轴只有一个公共点,则,据此即可求得.【详解】∵,,,根据题意得:,解得:n=4,故选:C.【点睛】本题考查了抛物线与轴的交点,二次函数(a,b,c是常数,a≠0)的交点与一元二次方程根之间的关系.决定抛物线与轴的交点个数.>0时,抛物线与x轴有2个交点;时,抛物线与轴有1个交点;<0时,抛物线与轴没有交点.6、A【分析】根据图象与x轴的交点即可求出方程的根.【详解】根据题意得,对称轴为∵∴∴故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程图象的性质是解题的关键.7、D【分析】将点A代入抛物线表达式中,得到,根据进行判断.【详解】∵抛物线经过点,∴,∵,∴的值在3和4之间,故选D.【点睛】本题考查抛物线的表达式,无理数的估计,熟知是解题的关键.8、B【分析】由平行线的性质可得∠C'CA=∠CAB=64°,由折叠的性质可得AC=AC',∠BAB'=∠CAC',可得∠ACC'=∠C'CA=64°,由三角形内角和定理可求解.【详解】∵CC′∥AB,
∴∠C'CA=∠CAB=64°,
∵将△ABC绕点A旋转到△AB′C′的位置,
∴AC=AC',∠BAB'=∠CAC',
∴∠ACC'=∠C'CA=64°,
∴∠C'AC=180°−2×64°=52°,
故选:B.【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键.9、A【分析】根据题意可知b=3-b2,a+b=-1,ab=-3,所求式子化为a2-b+2019=a2-3+b2+2019=(a+b)2-2ab+2016即可求解.【详解】,是方程的两个实数根,∴,,,∴;故选A.【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.10、A【分析】根据众数和中位数的定义解答即可.【详解】解:在这组数据中出现次数最多的是3,即众数是3;
把这组数据按照从小到大的顺序排列3,3,3,4,4,5,6,
∴中位数为4;
故选:A.【点睛】本题考查一组数据的中位数和众数,一组数据中出现次数最多的数据叫做众数;在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.二、填空题(每小题3分,共24分)11、【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:;故答案为:.【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).12、【分析】作轴于C,轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到,,再证明∽,然后利用相似三角形的性质得到的值,即可得出.【详解】解:作轴于C,轴于D,如图,点A、B分别在反比例函数,的图象上,,,,,,∽,,.故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.13、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【详解】列表得:
-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【点睛】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.14、(3,0)【分析】把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标.【详解】把点(1,0)代入抛物线y=x2-4x+中,得m=6,所以,原方程为y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴抛物线与x轴的另一个交点的坐标是(3,0).故答案为(3,0).【点睛】本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法.本题也可以用根与系数关系直接求解.15、【分析】过点E作EG⊥BC于G,根据矩形的性质可得:EG=AB=8cm,∠A=90°,,然后根据折叠的性质可得:cm,,,,根据勾股定理和锐角三角函数即可求出cos∠,再根据同角的余角相等可得,再根据锐角三角函数即可求出,从而求出,最后根据勾股定理即可求出.【详解】过点E作EG⊥BC于G∵矩形纸片中,,,∴EG=AB=8cm,∠A=90°,根据折叠的性质cm,,,∴BF=AB-AF=3cm根据勾股定理可得:cm∴cos∠∵,∴∴解得:cm∴AE=10cm,∴ED=AD-AE=2cm∴∴根据勾股定理可得:故答案为:.【点睛】此题考查的是矩形的性质、折叠的性质、勾股定理和锐角三角函数,掌握矩形的性质、折叠的性质、用勾股定理和锐角三角函数解直角三角形是解决此题的关键.16、-1【解析】试题分析:把代入方程,即可得到关于a的方程,再结合二次项系数不能为0,即可得到结果.由题意得,解得,则考点:本题考查的是一元二次方程的根即方程的解的定义点评:解答本题的关键是熟练掌握一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.同时注意一元二次方程的二次项系数不能为0.17、1【分析】根据扇形的面积公式S=,可得出R的值.【详解】解:∵扇形的弧长为πcm,面积为3πcm2,扇形的面积公式S=,可得R=故答案为1.【点睛】本题考查了扇形面积的求法,掌握扇形面积公式是解答本题的关键.18、2024【分析】把代入方程得出的值,再整体代入中即可求解.【详解】把代入方程得:,即∴故填:2024.【点睛】本题考查一元二次方程的解法,运用整体代入法是解题的关键.三、解答题(共66分)19、(1)①证明见解析;②;(2)【分析】(1)①根据三角形内角和定理可得,然后根据三角形外角的性质可得,从而证出结论;②过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用AAS证出,可得,利用平行线分线段成比例定理即可证出结论;(2)根据三角形内角和定理可得,然后根据三角形外角的性质可得,过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用相似三角形的判定证出,可得,利用平行线分线段成比例定理即可证出结论;【详解】证明:(1)①∵,∴∵,∴,∴②如图,过点作交的延长线于点,过点作于点,过点作交于点,∵,,∴,∴,∵∴,∴∵点是中点,∴∵,∴,∴∵∴,∴∵∴(2)∵,∴∵,∴,∴过点作交的延长线于点,过点作于点,过点作交于点,∵,,∴,∴,∵∴,∴∵,∴∵,∴,∴∴∵∴,∴∵∴【点睛】此题考查的是相似三角形与全等三角形的综合大题,掌握构造全等三角形、相似三角形的方法、全等三角形的判定及性质和相似三角形的判定及性质是解决此题的关键.20、(1)证明见试题解析;(2)1.【分析】(1)先证∠BAE=∠BCF,又由BA=BC,AE=CF,得到△BAE≌△BCF;(2)由已知可得四边形BFDE对角线互相垂直平分,只要∠EBF=90°即得四边形BFDE是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=1°.【详解】解:(1)∵菱形ABCD的对角线AC,BD相交于点O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE与△BCF中,∵BA=BC,∠BAE=∠BCF,AE=CF,∴△BAE≌△BCF(SAS);(2)∵四边形BFDE对角线互相垂直平分,∴只要∠EBF=90°即得四边形BFDE是正方形,∵△BAE≌△BCF,∴∠EBA=∠FBC,又∵∠ABC=50°,∴∠EBA+∠FBC=40°,∴∠EBA=×40°=1°.故答案为1.【点睛】本题考查菱形的性质;全等三角形的判定与性质;正方形的判定.21、(1)A种粽子单价为4元/个,B种粽子单价为4.1元/个;(2)A种粽子最多能购进100个【分析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量=总价÷单价结合用4100元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A种粽子m个,则购进B种粽子(1100﹣m)个,根据总价=单价×数量结合总价不超过1000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:=1100,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.2x=4.1.答:A种粽子单价为4元/个,B种粽子单价为4.1元/个.(2)设购进A种粽子m个,则购进B种粽子(1100﹣m)个,依题意,得:4m+4.1(1100﹣m)≤1000,解得:m≤100.答:A种粽子最多能购进100个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22、(1)见解析;(2);(3)【分析】(1)分别作出线段BC,线段AC的垂直平分线EF,MN交于点O,以O为圆心,OB为半径作⊙O即可.(2)连接OB,OC,作CH⊥AB于H.解直角三角形求出BC,即可解决问题.(3)利用扇形的面积公式计算即可.【详解】(1)如图⊙O即为所求.(2)连接OB,OC,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=1,∠A=60°,∴∠ACH=30°,∴AHAC=2,CHAH=2,∵AB=6,∴BH=1,∴BC2,∵∠BOC=2∠A=120°,OB=OC,OF⊥BC,∴BF=CF,∠COF∠BOC=60°,∴OC.(3)S扇形OBC.【点睛】本题考查了作图﹣复杂作图,勾股定理,解直角三角形,三角形的外接圆与外心等知识,解答本题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23、(1)9,9(2)23,3【详解】(1)x甲==(10+9+8+8+10+9)÷6x乙=(10+10+8+10+7+9)÷6=(2)S(3)∵x甲∴推荐甲参加省比赛更合适【点睛】方差的基本知识是判断乘积等一些频率图形分布规律的常考点24、(1)见解析(2)【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得满足关于x的方程没有实数解的有:(-1,1),(0,1),(1,1),再利用概率公式即可求得答案.【详解】(1)画树状图得:则共有9种等可能的结果;(2)方程没有实数解,即△=p−4q<0,由(1)可得:满足△=p−4q<0的有:(−1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为:【点睛】此题考查列表法与树状图法,根的判别式,掌握运算法则是解题关键25、(1);(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版拌合料生产设备维修与保养合同4篇
- 2025年度农业休闲观光区绿化景观建设与运营合同4篇
- 2025版安防弱电系统集成服务合同3篇
- 2025年度个人肖像摄影合同范本集4篇
- 二零二五年度南京体育健身行业劳务派遣合同
- 二零二五年度木材行业安全生产责任保险合同
- 第8~9讲 反应动力学基础知识
- 2025年度建筑幕墙工程安全质量责任合同4篇
- 二零二五年度农业生态环境保护与修复服务合同
- 二零二五年度使用知识产权许可合同
- 中国末端执行器(灵巧手)行业市场发展态势及前景战略研判报告
- 北京离婚协议书(2篇)(2篇)
- 2025中国联通北京市分公司春季校园招聘高频重点提升(共500题)附带答案详解
- 康复医学科患者隐私保护制度
- Samsung三星SMARTCAMERANX2000(20-50mm)中文说明书200
- 2024年药品质量信息管理制度(2篇)
- 2024年安徽省高考地理试卷真题(含答案逐题解析)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 高中学校开学典礼方案
- 内审检查表完整版本
- 3级人工智能训练师(高级)国家职业技能鉴定考试题及答案
评论
0/150
提交评论