2023届西藏自治区山南市错那县九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2023届西藏自治区山南市错那县九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2023届西藏自治区山南市错那县九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2023届西藏自治区山南市错那县九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2023届西藏自治区山南市错那县九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,的直径,是上一点,点平分劣弧,交于点,,则图中阴影部分的面积等于()A. B. C. D.2.已知关于x的一元二次方程x2+3x﹣2=0,下列说法正确的是()A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.没有实数根 D.无法确定3.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n4.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)5.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个 B.2个 C.3个 D.4个6.如图,矩形草坪ABCD中,AD=10m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1m,则这条便道的面积大约是()(精确到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m27.小明利用计算机列出表格对一元二次方程进行估根如表:那么方程的一个近似根是()A. B. C. D.8.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC="4"cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离 B.相切 C.相交 D.相切或相交9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4 B.或4 C.或6 D.4或610.将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为()A.y=﹣2 B.y=2 C.y=﹣3 D.y=3二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点,…按此做法进行下去,其中弧的长为_______.12.抛物线向左平移2个单位,再向上平移1个单位,得到的抛物线是______.13.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是__________.14.已知等腰,,BH为腰AC上的高,,,则CH的长为______.15.如图所示,在中,、相交于点,点是的中点,联结并延长交于点,如果的面积是4,那么的面积是______.16.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是_____.17.不等式组的解集为__________.18.Rt△ABC中,∠C=90°,AB=10,,则BC的长为____________.三、解答题(共66分)19.(10分)某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图所示两幅不完整的统计图,请根据统计图回答下列问题:(1)补全条形统计图并填空,本次调查的学生共有名,估计该校2000名学生中“不了解”的人数为.(2)“非常了解”的4人中有A1、A2两名男生,B1、B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到两名男生的概率.20.(6分)如图,转盘A中的4个扇形的面积相等,转盘B中的3个扇形面积相等.小明设计了如下游戏规则:甲、乙两人分别任意转动转盘A、B一次,当转盘停止转动时,将指针所落扇形中的2个数相乘,如果所得的积是偶数,那么是甲获胜;如果所得的积是奇数,那么是乙获胜.这样的规则公平吗?为什么?21.(6分)如图,四边形ABCD中,对角线AC、BD相交于点O,且AD//BC,BD的垂直平分线经过点O,分别与AD、BC交于点E、F(1)求证:四边形ABCD为平行四边形;(2)求证:四边形BFDE为菱形.22.(8分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.23.(8分)已知是关于的一元二次方程的两个实数根.(1)求的取值范围;(2)若,求的值;24.(8分)已知关于x的一元二次方程:2x2+6x﹣a=1.(1)当a=5时,解方程;(2)若2x2+6x﹣a=1的一个解是x=1,求a;(3)若2x2+6x﹣a=1无实数解,试确定a的取值范围.25.(10分)如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.26.(10分)阅读下列材料,关于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……(1)请观察上述方程与解的特征,比较关于x的方程x+=c+(a≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+=a+.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据垂径定理的推论和勾股定理即可求出BC和AC,然后根据S阴影=S半圆O-S△ABC计算面积即可.【详解】解:∵直径∴OB=OD=,∠ACB=90°∵点平分劣弧,∴BC=2BE,OE⊥BC,OE=OD-DE=4在Rt△OBE中,BE=∴BC=2BE=6根据勾股定理:AC=∴S阴影=S半圆O-S△ABC==故选A.【点睛】此题考查的是求不规则图形的面积,掌握垂径定理与勾股定理的结合和半圆的面积公式、三角形的面积公式是解决此题的关键.2、B【分析】根据一元二次方程的构成找出其二次项系数、一次项系数以及常数项,再根据根的判别式△=17>0,即可得出方程有两个不相等的实数根,此题得解.【详解】解:在一元二次方程x2+3x﹣2=0中,二次项系数为1,一次项系数为3,常数项为﹣2,∵△=32﹣4×1×(﹣2)=17>0,∴方程x2+3x﹣2=0有两个不相等的实数根.故选:B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.3、D【解析】根据反比例函数的性质,可得答案.【详解】∵y=−的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.4、D【解析】解:点M(1,﹣2)与点N关于原点对称,点N的坐标为故选D.【点睛】本题考查关于原点对称的点坐标特征:横坐标和纵坐标都互为相反数.5、C【分析】分x≥0及x<0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论.【详解】当x≥0时,,即:,

解得:,(不合题意,舍去),当x<0时,,即:,

解得:,,∴函数的图象上的“好点”共有3个.

故选:C.【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x<0两种情况,找出关于x的一元二次方程是解题的关键.6、C【分析】由四边形ABCD为矩形得到△ADB为直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°且外环半径为10.1,内环半径为9.1.这样可以求出每个扇环的面积.【详解】∵四边形ABCD为矩形,∴△ADB为直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°,且外环半径为10.1,内环半径为9.1.∴每个扇环的面积为.∴当π取3.14时整条便道面积为×2=10.4666≈10.1m2.便道面积约为10.1m2.故选:C.【点睛】此题考查内容比较多,有勾股定理、三角函数、扇形面积,做题的关键是把实际问题转化为数学问题.7、C【分析】根据表格中的数据,0与最接近,故可得其近似根.【详解】由表得,0与最接近,故其近似根为故答案为C.【点睛】此题主要考查对近似根的理解,熟练掌握,即可解题.8、B【分析】作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.【详解】解:作CD⊥AB于点D.

∵∠B=30°,BC=4cm,∴即CD等于圆的半径.

∵CD⊥AB,

∴AB与⊙C相切.

故选:B.9、D【分析】分两种情形:当时,,设,,可得,解出值即可;当时,过点作,可得,得出,,则,证明,得出方程求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,设,,①当时,可得,,,,.②当时,如图2中,过点作,可得,,,,,,,,,,,,.综上所述,或1.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.10、A【分析】根据二次函数图象“左移x加,右移x减,上移c加,下移c减”的规律即可知平移后的解析式,进而可判断最值.【详解】将y=﹣(x+4)1+1的图象向右平移1个单位,再向下平移3个单位,所得图象的函数表达式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其顶点坐标是(﹣1,﹣1),由于该函数图象开口方向向下,所以,所得函数的最大值是﹣1.故选:A.【点睛】本题主要考查二次函数图象的平移问题和最值问题,熟练掌握平移规律是解题关键.二、填空题(每小题3分,共24分)11、.【分析】连接,,,易求得垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题.【详解】连接,,

是上的点,

直线l解析式为,

为等腰直角三角形,即轴,

同理,垂直于x轴,

为圆的周长,

以为圆心,为半径画圆,交x轴正半轴于点,以为圆心,为半径画圆,交x轴正半轴于点,以此类推,

当时,

故答案为【点睛】本题考查了圆周长的计算,考查了从图中找到圆半径规律的能力,本题中准确找到圆半径的规律是解题的关键.12、【分析】先得到抛物线的顶点坐标为(0,0),根据平移规律得到平移后抛物线的顶点坐标,则利用顶点式可得到平移后的抛物线的解析式为.【详解】抛物线的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移1个单位得到的点的坐标为(,1),

所以平移后的抛物线的解析式为.

故答案为:.【点睛】本题考查了二次函数图象的平移:由于抛物线平移后的形状不变,故a不变,再考虑平移后的顶点坐标,即可求出解析式.13、【解析】袋子中一共有3个球,其中有2个黑球,根据概率公式直接进行计算即可.【详解】袋子中一共有3个球,其中有2个黑球,所以任意摸出一个球,摸到黑球的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.14、或【分析】如图所示,分两种情况,利用特殊角的三角函数值求出的度数,利用勾股定理求出所求即可.【详解】当为钝角时,如图所示,在中,,,,根据勾股定理得:,即,;当为锐角时,如图所示,在中,,,,设,则有,根据勾股定理得:,解得:,则,故答案为或【点睛】此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键.15、36【分析】首先证明△AFE∽△CBE,然后利用对应边成比例,E为OA的中点,求出AE:EC=1:3,即可得出.【详解】在平行四边形ABCD中,AD∥BC,

则△AFE∽△CBE,

∴,

∵O为对角线的交点,

∴OA=OC,

又∵E为OA的中点,

∴AE=AC,

则AE:EC=1:3,

∴AF:BC=1:3,

∴即∴=36故答案为:36【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.16、x=﹣1【分析】所求方程ax+b=0的解,即为函数y=ax+b图像与x轴交点横坐标,根据已知条件中点B即可确定.【详解】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣1,0),∴方程ax+b=0的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查了一次函数与一元一次方程的关系,掌握一次函数与一元一次方程之间的关系是解题的关键.17、【解析】首先分别解出两个不等式的解集,再确定不等式组的解集.【详解】解答:,

由①得:,

由②得:,

∴不等式组的解集为,故答案为:【点睛】此题主要考查了解一元一次不等式组,关键是解不等式.18、1【分析】由cosB==可设BC=3x,则AB=5x,根据AB=10,求得x的值,进而得出BC的值即可.【详解】解:如图,

∵Rt△ABC中,cosB==,

∴设BC=3x,则AB=5x=10,∴x=2,BC=1,故答案为:1.【点睛】本题考查了解直角三角形,熟练掌握三角函数的定义及勾股定理是解题的关键.三、解答题(共66分)19、(1)图详见解析,50,600;(2).【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,继而由各了解程度的人数之和等于总人数求得“不了解”的人数,用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好抽到2名男生的结果数,利用概率公式计算可得.【详解】解:(1)本次调查的学生总人数为4÷8%=50人,则不了解的学生人数为50﹣(4+11+20)=15人,∴估计该校2000名学生中“不了解”的人数约有2000×=600人,补图如下:故答案为:50、600;(2)画树状图如下:共有12种可能的结果,恰好抽到2名男生的结果有2个,∴P(恰好抽到2名男生)==.【点睛】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20、规则不公平,理由见解析【解析】首先根据题意画出表格,然后由表格求得所有等可能的结果,由两个数字的积为奇数和偶数的情况,再利用概率公式即可求得答案.【详解】解:列表,积的情况如下:以上共有12个等可能的结果,其中积为偶数的有8个结果,积为奇数的有4个结果,∴P(甲胜)=,P(乙胜)=,∵P(甲胜)>P(乙胜),∴规则不公平.【点睛】本题考查游戏公平性、列表法和树状图法,解答此类问题的关键是明确题意,写出所有的可能性.21、(1)见解析;(2)见解析.【解析】(1)由平行线的性质可得,根据EF经过点O且垂直平分BD可得,利用ASA可证明△DOA≌△BOC,可得OA=OC,即可证明四边形ABCD为平行四边形;(2)利用ASA可证明≌,可得OE=OF,根据对角线互相垂直且平分的四边形是菱形即可得结论.【详解】(1)∵AD//BC,经过点O,且垂直平分,∴,,在和中,∴≌,∴OA=OC,∴四边形为平行四边形.(2)由(1)知,,∴在和中,∴≌,∴,∵垂直平分,∴,,∴四边形为菱形.【点睛】本题考查平行四边形的判定及菱形的判定,有一组对边平行且相等的四边形是平行四边形;对角线互相垂直且平分的四边形是菱形;熟练掌握判定定理是解题关键.22、(1)证明见详解;(2);(3)30°或45°.【分析】(1)由题意:∠E=90°-∠ADE,证明∠ADE=90°-∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,,由BD:DE=2:3,可得cos∠ABC=;(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【详解】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE=(∠ABC+∠BAC)=90°-∠C,∴∠E=90°-(90°-∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC=;(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°;②当∠C=∠DAE=90°时,∠E=∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°;综上所述,∠ABC=30°或45°.【点睛】本题属于相似形综合题,考查相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题.23、(1);(2).【分析】(1)由方程有两个实数根可知,代入方程的系数可求出m的取值范围.(2)将等式左边展开,根据根与系数的关系,,代入系数解方程可求出m,再根据m的取值范围舍去不符合题意的值即可.【详解】解:(1)方程有两个实数根(2)由根与系数的关系,得:,【点睛】本题考查一元二次方程根的判别式,根与系数的关系,熟记公式是解题的关键.24、(1),;(2)a=8;(3)【分析】(1)将a的值代入,再利用公式法求解可得;(2)将x=1代入方程,再求a即可;(3)由方程无实数根得出△=62﹣4×2(﹣a)<1,解之可得.【详解】解:(1)当a=5时,方程为2x2+6x﹣5=1,∴,∴,解得:,;(2)∵x=1是方程2x2+6x﹣a=1的一个解,∴2×12+6×1﹣a=1,∴a=8;(3)∵2x2+6x﹣a=1无实数解,∴△=62﹣4×2(﹣a)=36+8a<1,解得:.【点睛】本题主要考查一元二次方程的解、解一元二次方程以及一元二次方程根的判别式的意义,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2−4ac有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1时,方程无实数根.25、(1)B(0,2),;(2)①点M的坐标为(,0)或M(,0);②m=-1或m=或m=.【分析】(1)把点代入求得c值,即可得点B的坐标;抛物线经过点,即可求得b值,从而求得抛物线的解析式;(2)由轴,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论