版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个几何体的三视图如图所示,则这个几何体是()A.球体 B.圆锥 C.棱柱 D.圆柱2.如图是二次函数的部分图象,则的解的情况为()A.有唯一解 B.有两个解 C.无解 D.无法确定3.二次函数的图象如右图所示,那么一次函数的图象大致是()A. B.C. D.4.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a25.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC︰BC=3︰4,则BD︰CE为()A.5︰3 B.4︰3 C.︰2 D.2︰6.下列语句中正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.经过圆心的每一条直线都是圆的对称轴7.下列运算正确的是()A.a•a1=a B.(2a)3=6a3 C.a6÷a2=a3 D.2a2﹣a2=a28.一根水平放置的圆柱形输水管横截面积如图所示,其中有水部分水面宽8米,最深处水深2米,则此输水管道的半径是()A.4米 B.5米 C.6米 D.8米9.若二次函数的图象经过点P
(-1,2),则该图象必经过点()A.(1,2) B.(-1,-2) C.(-2,1) D.(2,-1)10.一个盒子装有红、黄、白球分别为2、3、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.12.如图,在矩形ABCD中,AB=4,BC=8,将矩形沿对角线BD折叠,使点C落在点E处,BE交AD于点F,则BF的长为________.13.若某斜面的坡度为,则该坡面的坡角为______.14.已知二次根式有意义,则满足条件的的最大值是______.15.如果是一元二次方程的一个根,那么的值是__________.16.已知反比例函数的图象经过点P(a+1,4),则a=_________________.17.已知点A关于原点的对称点坐标为(﹣1,2),则点A关于x轴的对称点的坐标为_________18.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.三、解答题(共66分)19.(10分)如图,直线y=x﹣3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=﹣x2+mx+n与x轴的另一个交点为A,顶点为P.(1)求3m+n的值;(2)在该抛物线的对称轴上是否存在点Q,使以C,P,Q为顶点的三角形为等腰三角形?若存在,求出有符合条件的点Q的坐标;若不存在,请说明理由.(3)将该抛物线在x轴上方的部分沿x轴向下翻折,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M“形状的新图象,若直线y=x+b与该“M”形状的图象部分恰好有三个公共点,求b的值.20.(6分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣121.(6分)如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.22.(8分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.23.(8分)如图,在平面直角坐标系中,将一个图形绕原点顺时针方向旋转称为一次“直角旋转,已知的三个顶点的坐标分别为,,,完成下列任务:(1)画出经过一次直角旋转后得到的;(2)若点是内部的任意一点,将连续做次“直角旋转”(为正整数),点的对应点的坐标为,则的最小值为;此时,与的位置关系为.(3)求出点旋转到点所经过的路径长.24.(8分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.25.(10分)(1)解方程:(2)如图,正六边形的边长为2,以点为圆心,长为半径画弧,求弧的长.26.(10分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求CD的长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.2、C【分析】根据图象可知抛物线顶点的纵坐标为-3,把方程转化为,利用数形结合求解即可.【详解】根据图象可知抛物线顶点的纵坐标为-3,把转化为抛物线开口向下有最小值为-3∴(-3)>(-4)即方程与抛物线没有交点.即方程无解.故选C.【点睛】本题考查了数形结合的思想,由题意知道抛物线的最小值为-3是解题的关键.3、D【分析】可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.【详解】解:由二次函数图象,得出a>0,,b<0,
A、由一次函数图象,得a<0,b>0,故A错误;
B、由一次函数图象,得a>0,b>0,故B错误;
C、由一次函数图象,得a<0,b<0,故C错误;
D、由一次函数图象,得a>0,b<0,故D正确.
故选:D.【点睛】本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.4、C【解析】试题分析:选项A,根据合并同类项法则可得5m+2m=(5+2)m=7m,错误;选项B,依据单项式乘单项式法则可得﹣2m2•m3=﹣2m5,错误;选项C,根据积的乘方法则可得(﹣a2b)3=﹣a6b3,正确;选项D,根据平方差公式可得(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,错误.故答案选C.考点:幂的乘方与积的乘方;合并同类项;单项式乘单项式;平方差公式.5、A【解析】因为∠ACB=90°,AC︰BC=3︰4,则因为∠ACB=∠AED=90°,∠ABC=∠ADE,得△ABC△ADE,得,,则,.故选A.6、D【解析】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A、在同圆或等圆中,长度相等的两条弧是等弧;B、平分弦(不是直径)的直径垂直于弦;C、在同圆或等圆中,相等的圆心角所对的弧相等;D、经过圆心的每一条直线都是圆的对称轴;故选D.点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.7、D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【详解】A.a•a1=a2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.8、B【详解】解:∵OC⊥AB,AB=8米,∴AD=BD=4米,设输水管的半径是r,则OD=r﹣2,在Rt△AOD中,∵OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=1.故选B.【点睛】本题考查垂径定理的应用;勾股定理.9、A【分析】先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.【详解】解:∵二次函数y=ax2的对称轴为y轴,
∴若图象经过点P(-1,2),
则该图象必经过点(1,2).
故选:A.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键.10、D【分析】用黄球的个数除以球的总数即为摸到黄球的概率.【详解】∵布袋中装有红、黄、白球分别为2、3、5个,共10个球,从袋中任意摸出一个球共有10种结果,其中出现黄球的情况有3种可能,∴得到黄球的概率是:.故选:D.【点睛】本题考查随机事件概率的求法:如果一个事件有m种可能,而且这些事件的可能性相同,其中事件A出现n种结果,那么事件A的概率P(A)=.二、填空题(每小题3分,共24分)11、【详解】解:设E(x,x),∴B(2,x+2),∵反比例函数(k≠0,x>0)的图象过点B.E.∴x2=2(x+2),,(舍去),,故答案为12、5【解析】由翻折的性质可以知道,由矩形的性质可以知道:,从而得到,于是,故此BF=DF,在中利用勾股定理可求得BF的长.【详解】由折叠的性质知,CD=ED,BE=BC.
四边形ABCD是矩形,
在和中,
,
,
;
设BF=x,则DF=x,AF=8-x,
在中,可得:,即,
计算得出:x=5,
故BF的长为5.
因此,本题正确答案是:5【点睛】本题考查了折叠的性质折叠前后两图形全等,即对应线段相等,对应角相等,也考查了勾股定理,矩形的性质.13、30°【分析】根据坡度与坡比之间的关系即可得出答案.【详解】∵∴坡面的坡角为故答案为:【点睛】本题主要考查坡度与坡角,掌握坡度与坡角之间的关系是解题的关键.14、【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可求出x的最大值【详解】∵二次根式有意义;∴3-4x≥0,解得x≤,∴x的最大值为;故答案为.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.15、6【分析】根据是一元二次方程的一个根可得m2-3m=2,把变形后,把m2-3m=2代入即可得答案.【详解】∵是一元二次方程的一个根,∴m2-3m=2,∴=2(m2-3m)+2=2×2+2=6,故答案为:6【点睛】本题考查一元二次方程的解的定义,熟练掌握定义并正确变形是解题关键.16、-3【分析】直接将点P(a+1,4)代入求出a即可.【详解】直接将点P(a+1,4)代入,则,解得a=-3.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数知识和计算准确性是解决本题的关键,难度较小.17、(1,2)【分析】利用平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,求出点A的坐标,再利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,求出A点关于x轴的对称点的坐标.【详解】解:∵点A关于原点的对称点的坐标是(-1,2),∴点A的坐标是(1,-2),∴点A关于x轴的对称点的坐标是(1,2),故答案为:(1,2).【点睛】本题考查的知识点是关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.考点:圆周角定理.三、解答题(共66分)19、(1)9;(2)点Q的坐标为(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)b=﹣3或﹣.【分析】(1)求出B、C的坐标,将点B、C的坐标分别代入抛物线表达式,即可求解;(2)分CP=PQ、CP=CQ、CQ=PQ,分别求解即可;(3)分两种情况,分别求解即可.【详解】解:(1)直线y=x﹣3,令y=0,则x=3,令x=0,则y=﹣3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标分别代入抛物线表达式得:,解得:,则抛物线的表达式为:y=﹣x2+4x﹣3,则点A坐标为(1,0),顶点P的坐标为(2,1),3m+n=12﹣3=9;(2)①当CP=CQ时,C点纵坐标为PQ中点的纵坐标相同为﹣3,故此时Q点坐标为(2,﹣7);②当CP=PQ时,∵PC=,∴点Q的坐标为(2,1﹣)或(2,1+);③当CQ=PQ时,过该中点与CP垂直的直线方程为:y=﹣x﹣,当x=2时,y=﹣,即点Q的坐标为(2,﹣);故:点Q的坐标为(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)图象翻折后的点P对应点P′的坐标为(2,﹣1),①在如图所示的位置时,直线y=x+b与该“M”形状的图象部分恰好有三个公共点,此时C、P′、B三点共线,b=﹣3;②当直线y=x+b与翻折后的图象只有一个交点时,此时,直线y=x+b与该“M”形状的图象部分恰好有三个公共点;即:x2﹣4x+3=x+b,△=52﹣4(3﹣b)=0,解得:b=﹣.即:b=﹣3或﹣.【点睛】本题考查的是二次函数综合运用,涉及的知识点有待定系数法求二次函数解析式,一次函数的图像与性质,勾股定理,等腰三角形的定义,二次函数的翻折变换及二次函数与一元二次方程的关系.难点在于(3),关键是通过数形变换,确定变换后图形与直线的位置关系,难度较大.本题也考查了分类讨论及数形结合的数学思想.20、1【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【详解】原式=1×+3﹣+1﹣1=1.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21、(2)y=﹣x2+3x+2;(2)存在.P(﹣,).(3)【分析】(2)将A,B,C三点代入y=ax2+bx+2求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(2)∵抛物线y=ax2+bx+2(a≠0)与x轴,y轴分别交于点A(﹣2,0),B(2,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+3x+2.(2)存在.理由如下:y=﹣x2+3x+2=﹣(x﹣)2+.∵点D(3,m)在第一象限的抛物线上,∴m=2,∴D(3,2),∵C(0,2)∵OC=OB,∴∠OBC=∠OCB=25°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=25°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为yBP=kx+b(k≠0),把G(0,2),B(2,0)代入,得k=﹣,b=2,∴BP解析式为yBP=﹣x+2.yBP=﹣x+2,y=﹣x2+3x+2当y=yBP时,﹣x+2=﹣x2+3x+2,解得x2=﹣,x2=2(舍去),∴y=,∴P(﹣,).(3)理由如下,如图B(2,0),C(0,2),抛物线对称轴为直线,设N(,n),M(m,﹣m2+3m+2)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴2-=0-m,∴m=∴﹣m2+3m+2=,∴;或∴0-=2-m,∴m=∴﹣m2+3m+2=,∴;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴∴m=∴﹣m2+3m+2=∴综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.22、该种药品平均每次降价的百分率是30%.【解析】试题分析:设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是,据此列出方程求解即可.试题解析:设该种药品平均每场降价的百分率是x,由题意得:解得:(不合题意舍去),=30%.答:该种药品平均每场降价的百分率是30%.考点:一元二次方程的应用;增长率问题.23、(1)图见解析;(2)2,关于中心对称;(3).【分析】(1)根据图形旋转的性质画出旋转后的△即可;(2)根据中心对称的性质即可得出结论;(3)根据弧长公式求解即可.【详解】解:(1)如图,△即为所求;(2)点的对应点的坐标为,点与关于点对称,.故答案为:2,关于中心对称.(3)∵点A坐标为∴,则旋转到点所经过的路径长.【点睛】本题考查了根据旋转变换作图以及弧长公式,解答本题的关键是根据网格结构找出对应点的位置.24、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 韵达天下快递公司劳动合同
- 韩国语课程设计
- 降温报警器课程设计
- 化工设计课程设计二甲醚
- 燃烧室课程设计
- 湖北理工学院《数字图像处理》2022-2023学年期末试卷
- 湖北理工学院《电气控制与PLC》2022-2023学年期末试卷
- 亲子手工剪纸课程设计
- 湖北工业大学《数据库原理与应用》2022-2023学年期末试卷
- 湖北工业大学《电力系统高电压技术》2021-2022学年期末试卷
- 中南大学学位证书样本扫描件WORD
- 微机原理及单片机接口技术课后题答案_1-6章_
- 中国股票市场反向投资策略的实证研究
- 通灵蓝色火焰 柏林电影节事件营销方
- 多重中介模型及其应用
- 车位租赁合同电子版
- 化妆品行业标准操作程序《玻璃瓶检验标准》
- 可分离变量的微分方程(8)课件
- 苏J01-2005图集
- (精选)台阶和树木移除申请书
- 《人类成长与社会环境》形考作业1-4答案
评论
0/150
提交评论