2023届陕西省宝鸡市名校数学九年级第一学期期末教学质量检测试题含解析_第1页
2023届陕西省宝鸡市名校数学九年级第一学期期末教学质量检测试题含解析_第2页
2023届陕西省宝鸡市名校数学九年级第一学期期末教学质量检测试题含解析_第3页
2023届陕西省宝鸡市名校数学九年级第一学期期末教学质量检测试题含解析_第4页
2023届陕西省宝鸡市名校数学九年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数的图象的顶点坐标为()A. B. C. D.2.如图,为⊙O的直径,弦于,则下面结论中不一定成立的是()A. B.C. D.3.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.一组对边平行,一组对角相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形4.如图,在同一坐标系中(水平方向是x轴),函数和的图象大致是()A. B. C. D.5.如图,在△ABC中,点D在边AB上,且AD=5cm,DB=3cm,过点D作DE∥BC,交边AC于点E,将△ADE沿着DE折叠,得△MDE,与边BC分别交于点F,G.若△ABC的面积为32cm2,则四边形DEGF的面积是()A.10cm2 B.10.5cm2 C.12cm2 D.12.5cm26.如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20° B.35° C.40° D.55°7.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.168.如图,一艘快艇从O港出发,向东北方向行驶到A处,然后向西行驶到B处,再向东南方向行驶,共经过1小时到O港,已知快艇的速度是60km/h,则A,B之间的距离是()A. B. C. D.9.如图,将△ABC绕着点A顺时针旋转30°得到△AB′C′,若∠BAC′=80°,则∠B′AC=()‘A.20° B.25° C.30° D.35°10.如图,在平面直角坐标系中,⊙P的圆心坐标是(-3,a)(a>3),半径为3,函数y=-x的图像被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.11.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°12.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA= B.tanA= C.cosB= D.tanB=二、填空题(每题4分,共24分)13.2018年10月21日,河间市诗经国际马拉松比赛拉开帷幕,电视台动用无人机航拍技术全程录像.如图,是无人机观测AB两选手在某水平公路奔跑的情况,观测选手A处的俯角为,选手B处的俯角为45º.如果此时无人机镜头C处的高度CD=20米,则AB两选手的距离是_______米.14.抛物线y=(x﹣1)2+3的对称轴是直线_____.15.已知⊙O的直径为10cm,线段OP=5cm,则点P与⊙O的位置关系是__.16.在一个不透明的袋子中装有个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球放回,混合均匀后再摸出一个球,两次都摸到红球的概率是___________.17.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.18.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).三、解答题(共78分)19.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.20.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC绕点O顺时针旋转90°后的△A′B′C′.(2)求点B绕点O旋转到点B′的路径长(结果保留π).21.(8分)某数学兴趣小组根据学习函数的经验,对分段函数的图象与性质进行了探究,请补充完整以下的探究过程.x…-2-101234…y…30-1010-3…(1)填空:a=.b=.(2)①根据上述表格数据补全函数图象;②该函数图象是轴对称图形还是中心对称图形?(3)若直线与该函数图象有三个交点,求t的取值范围.22.(10分)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.23.(10分)如图,菱形的顶点在菱形的边上,与相交于点,,若,,求菱形的边长.24.(10分)已知:如图(1),射线AM∥射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC.(1)求证:△ADE∽△BEC;(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;(3)当AD+DE=AB=时.设AE=m,请探究:△BEC的周长是否与m值有关?若有关,请用含有m的代数式表示△BEC的周长;若无关,请说明理由.25.(12分)如图,已知抛物线经过点A(1,0)和B(0,3),其顶点为D.设P为该抛物线上一点,且位于抛物线对称轴右侧,作PH⊥对称轴,垂足为H,若△DPH与△AOB相似(1)求抛物线的解析式(2)求点P的坐标26.动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据二次函数顶点式的性质即可得答案.【详解】∵是二次函数的顶点式,∴顶点坐标为(0,-1),故选:B.【点睛】本题考查二次函数的性质,熟练掌握二次函数的三种形式是解题关键.2、D【分析】根据垂径定理分析即可.【详解】根据垂径定理和等弧对等弦,得A.B.

C正确,只有D错误.故选D.【点睛】本题考查了垂径定理,熟练掌握垂直于弦(非直径)的直径平分弦且平分这条弦所对的两条弧是解题的关键.3、D【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【详解】A、对角线互相垂直平分的四边形是菱形,命题正确,不符合题意;B、一组对边平行,一组对角相等的四边形是平行四边形,命题正确,不符合题意;C、矩形的对角线相等,命题正确,不符合题意;D、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项符合题意.故选:D.【点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.4、A【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.5、B【分析】根据相似多边形的性质进行计算即可;【详解】∵DE∥BC,∴,,又由折叠知,∴,∴DB=DF,∵,,∴,即,∴,∴,同理可得:,∴四边形DEGF的面积.故答案选B.【点睛】本题主要考查了相似多边形的性质,准确计算是解题的关键.6、A【解析】试题解析:∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,∵过点C的切线与边AD所在直线垂直于点M,∴∠MCA=∠ABC=55°,∠AMC=90°,∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC﹣∠AMC=35°,∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°.故选A.7、A【解析】试题分析:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故选A.考点:扇形面积的计算.8、B【分析】根据∠AOD=45°,∠BOD=45°,AB∥x轴,△AOB为等腰直角三角形,OA=OB,利用三角函数解答即可.【详解】∵∠AOD=45°,∠BOD=45°,∴∠AOD=90°,∵AB∥x轴,∴∠BAO=∠AOC=45°,∠ABO=∠BOD=45°,∴△AOB为等腰直角三角形,OA=OB,∵OB+OA+AB=60km,∵OB=OA=AB,∴AB=,故选:B.【点睛】本题考查了等腰直角三角形,解决本题的关键是熟悉等腰直角三角形的性质.9、A【解析】根据图形旋转的性质,图形旋转前后不发生任何变化,对应点旋转的角度即是图形旋转的角度,可直接得出∠C′AC=30°,由∠BAC′=80°可得∠BAC=∠B′AC′=50°,从而可得结论.【详解】由旋转的性质可得,∠BAC=∠B′AC′,∵∠C′AC=30°,∴∠BAC=∠B′AC′=50°,∴∠B′AC=20°.故选A.【点睛】此题主要考查了旋转的性质,图形旋转前后不发生任何变化,这是解决问题的关键.10、B【分析】如图所示过点P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,可得OC=3,PC=a,把x=-3代入y=-x得y=3,可确定D点坐标,可得△OCD为等腰直角三角形,得到△PED也为等腰直角三角形,又PE⊥AB,由垂径定理可得AE=BE=AB=2,在Rt△PBE中,由勾股定理可得PE=,可得PD=PE=,最终求出a的值.【详解】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(-3,a),∴OC=3,PC=a,把x=-3代入y=-x得y=3,∴D点坐标为(-3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.【点睛】本题主要考查了垂径定理、一次函数图象上点的坐标特征以及勾股定理,熟练掌握圆中基本定理和基础图形是解题的关键.11、B【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.【详解】解:∵直径AB⊥弦CD∴CE=DE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.12、D【分析】根据三角函数的定义求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=1.∴AC=,∴sinA=,tanA=,cosB=,tanB=.故选:D.【点睛】本题考查了解直角三角形,解答此题关键是正确理解和运用锐角三角函数的定义.二、填空题(每题4分,共24分)13、【分析】在两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可;【详解】由已知可得,,CD=20,∵于点D,∴在中,,,∴,在中,,,∴,∴.故答案为.【点睛】本题主要考查了解直角三角形的应用,准确理解和计算是解题的关键.14、x=1【解析】解:∵y=(x﹣1)2+3,∴其对称轴为x=1.故答案为x=1.15、点P在⊙O上【分析】知道圆O的直径为10cm,OP的长,得到OP的长与半径的关系,求出点P与圆的位置关系.【详解】因为圆O的直径为10cm,所以圆O的半径为5cm,又知OP=5cm,所以OP等于圆的半径,所以点P在⊙O上.故答案为点P在⊙O上.【点睛】本题考查了点与圆的位置关系,根据OP的长和圆O的直径,可知OP的长与圆的半径相等,可以确定点P的位置.16、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】解:画树状图得:∵共有9种等可能的结果,两次都摸到红球的只有4种情况,

∴两次都摸到红球的概率是:.

故答案为.【点睛】此题考查的是用列表法或树状图法求概率的知识.正确的列出树状图是解决问题的关键.17、【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.【详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=或x=-(舍去).故答案为:.【点睛】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.18、③④⑤【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题.【详解】解:由图象可得,抛物线开口向下,则a<0,抛物线与y轴交于正半轴,则c>0,对称轴在y轴右侧,则与a的符号相反,故b>0.

∴a<0,b>0,c>0,

∴abc<0,故①错误,

当x=-1时,y=a-b+c<0,得b>a+c,故②错误,

∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且-1<x1<0,对称轴x=1,

∴x=2时的函数值与x=0的函数值相等,

∴x=2时,y=4a+2b+c>0,故③正确,

∵x=-1时,y=a-b+c<0,-=1,

∴2a-2b+2c<0,b=-2a,

∴-b-2b+2c<0,

∴2c<3b,故④正确,

由图象可知,x=1时,y取得最大值,此时y=a+b+c,

∴a+b+c>am2+bm+c(m≠1),

∴a+b>am2+bm

∴a+b>m(am+b),故⑤正确,

故答案为:③④⑤.【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.三、解答题(共78分)19、(1)60,90;(2)见解析;(3)300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.20、(1)画图见解析;(2)点B绕点O旋转到点B′的路径长为.【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A′、B′、C′,从而得到△A′B′C′;(2)先计算出OB的长,然后根据弧长公式计算点B绕点O旋转到点B′的路径长.【详解】(1)如图,△A′B′C′为所作;(2)OB==3,点B绕点O旋转到点B′的路径长==π.【点睛】本题考查作图﹣旋转变换和旋转的性质,解题的关键是掌握旋转的性质.21、(1)﹣1,1;(2)①见解析;②函数图象是中心对称图形;(3)【分析】(1)把(1,0),(2,1)代入y=ax2+bx-3构建方程组即可解决问题.

(2)利用描点法画出函数图象,根据中心对称的定义即可解决问题.

(3)求出直线y=x+t与两个二次函数只有一个交点时t的值即可判断.【详解】解:(1)把(1,0),(2,1)代入y=ax2+bx﹣3得,解得,故答案为:﹣1,1.(2)①描点连线画出函数图象,如图所示;②该函数图象是中心对称图形.(3)由,消去y得到2x2﹣x﹣2﹣2t=0,当△=0时,1+16+16t=0,,由消去y得到2x2﹣7x+2t+6=0,当△=0时,19﹣16t﹣18=0,,观察图象可知:当时,直线与该函数图象有三个交点.【点睛】本题考查中心对称,二次函数的性质,一元二次方程的根的判别式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(2)y=-x2+2x+2.(2)P的坐标(2,2).(2)存在.点M的坐标为(2,),(2,-),(2,2),(2,0).【分析】(2)可设交点式,用待定系数法求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(2)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、②AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解【详解】(2)∵A(-2,0)、B(2,0)经过抛物线y=ax2+bx+c,∴可设抛物线为y=a(x+2)(x-2).又∵C(0,2)经过抛物线,∴代入,得2=a(0+2)(0-2),即a=-2.∴抛物线的解析式为y=-(x+2)(x-2),即y=-x2+2x+2.(2)连接BC,直线BC与直线l的交点为P.则此时的点P,使△PAC的周长最小.设直线BC的解析式为y=kx+b,将B(2,0),C(0,2)代入,得:,解得:.∴直线BC的函数关系式y=-x+2.当x-2时,y=2,即P的坐标(2,2).(2)存在.点M的坐标为(2,),(2,-),(2,2),(2,0).∵抛物线的对称轴为:x=2,∴设M(2,m).∵A(-2,0)、C(0,2),∴MA2=m2+4,MC2=m2-6m+20,AC2=20.①若MA=MC,则MA2=MC2,得:m2+4=m2-6m+20,得:m=2.②若MA=AC,则MA2=AC2,得:m2+4=20,得:m=±.③若MC=AC,则MC2=AC2,得:m2-6m+20=20,得:m=0,m=6,当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的M点,且坐标为(2,),(2,-),(2,2),(2,0).23、9【分析】连接,首先证明是等边三角形,再证明,推出,由此构建方程即可解决问题.【详解】解:连接.在菱形和菱形中,,,是等边三角形,设,则,,,,,,,,,,,或1(舍弃),,【点睛】本题考查相似多边形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24、(1)详见解析;(2)详见解析;(3)的周长与m值无关,理由详见解析.【分析】(1)由直角梯形ABCD中∠A为直角,得到三角形ADE为直角三角形,可得出两锐角互余,再由DE与EC垂直,利用垂直的定义得到∠DEC为直角,利用平角的定义推出一对角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得证;(2)延长DE、CB交于F,证明△ADE≌△BFE,根据全等三角形的性质得到DE=FE,AD=BF由CE⊥DE,得到直线CE是线段DF的垂直平分线,由线段垂直平分线的性质得DC=FC.即可得到结论;(3)△BEC的周长与m的值无关,理由为:设AD=x,由AD+DE=a,表示出DE.在直角三角形ADE中,利用勾股定理列出关系式,整理后记作①,由AB﹣AE=EB,表示出BE,根据(1)得到:△ADE∽△BEC,由相似得比例,将各自表示出的式子代入,表示出BC与EC,由EB+EC+BC表示出三角形EBC的周长,提取a﹣m后,通分并利用同分母分式的加法法则计算,再利用平方差公式化简后,记作②,将①代入②,约分后得到一个不含m的式子,即周长与m无关.【详解】(1)∵直角梯形ABCD中,∠A=90°,∴∠ADE+∠AED=90°,又∵DE⊥CE,∴∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,又∵∠A=∠B=90°,∴△ADE∽△BEC;(2)延长DE、CB交于F,如图2所示.∵AD∥BC,∴∠A=∠EBF,∠ADE=∠F.∵E是AB的中点,∴AE=BE.在△ADE和△BFE中,∵∠A=∠EBF,∠ADE=∠F,AE=BE,∴△ADE≌△BFE,∴DE=FE,AD=BF.∵CE⊥DE,∴直线CE是线段DF的垂直平分线,∴DC=FC.∵FC=BC+BF=BC+AD,∴AD+BC=CD.(3)△BEC的周长与m的值无关,理由为:设AD=x,由AD+DE=AB=a,得:DE=a﹣x.在Rt△AED中,根据勾股定理得:AD2+AE2=DE2,即x2+m2=(a﹣x)2,整理得:a2﹣m2=2ax,…①在△EBC中,由AE=m,AB=a,得:BE=AB﹣AE=a﹣m.∵由(1)知△ADE∽△BEC,∴,即,解得:BC,EC,∴△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论