2023届莆田市重点中学数学九上期末统考模拟试题含解析_第1页
2023届莆田市重点中学数学九上期末统考模拟试题含解析_第2页
2023届莆田市重点中学数学九上期末统考模拟试题含解析_第3页
2023届莆田市重点中学数学九上期末统考模拟试题含解析_第4页
2023届莆田市重点中学数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若关于x的一元二次方程有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.02.如图所示的几何体的左视图为()A. B. C. D.3.抛物线的项点坐标是()A. B. C. D.4.下列对二次函数的图象的描述,正确的是()A.开口向下 B.对称轴是轴C.当时,有最小值是 D.在对称轴左侧随的增大而增大5.如果点在双曲线上,那么m的值是()A. B. C. D.6.二次函数图象如图,下列结论:①;②;③当时,;④;⑤若,且,.其中正确的结论的个数有()A.1 B.2 C.3 D.47.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.8.如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则与的函数关系图象大致为()A. B.C. D.9.已知二次函数(是实数),当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是()A. B.C. D.10.抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是().A.出现的点数是7 B.出现的点数不会是0C.出现的点数是2 D.出现的点数为奇数11.已知是一元二次方程的一个解,则m的值是A.1 B. C.2 D.12.的值为()A.2 B. C. D.二、填空题(每题4分,共24分)13.圆锥的侧面展开的面积是12πcm2,母线长为4cm,则圆锥的底面半径为_________cm.14.已知x1,x2是关于x的方程x2﹣kx+3=0的两根,且满足x1+x2﹣x1x2=4,则k的值为_____.15.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为▲.16.比较大小:________.(填“,或”)17.□ABCD的两条对角线AC、BD相交于O,现从下列条件:①AC⊥BD②AB=BC③AC=BD④∠ABD=∠CBD中随机取一个作为条件,可推出□ABCD是菱形的概率是_________18.已知中,,交于,且,,,,则的长度为________.三、解答题(共78分)19.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中m的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.20.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.21.(8分)(1)解方程:;(2)图①②均为7×6的正方形网络,点A,B,C在格点上;(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可);(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可).22.(10分)解方程:x2+11x+9=1.23.(10分)教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.24.(10分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?25.(12分)抛物线与轴交于两点(点在点的左侧),与轴交于点.已知,抛物线的对称轴交轴于点.(1)求出的值;(2)如图1,连接,点是线段下方抛物线上的动点,连接.点分别在轴,对称轴上,且轴.连接.当的面积最大时,请求出点的坐标及此时的最小值;(3)如图2,连接,把按照直线对折,对折后的三角形记为,把沿着直线的方向平行移动,移动后三角形的记为,连接,,在移动过程中,是否存在为等腰三角形的情形?若存在,直接写出点的坐标;若不存在,请说明理由.26.解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.

参考答案一、选择题(每题4分,共48分)1、D【解析】由题意可知,该一元二次方程根的判别式的值大于零,即(-2)2-4m>0,∴m<1.对照本题的四个选项,只有D选项符合上述m的取值范围.故本题应选D.2、D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D选项符合题意,故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B、C.3、D【分析】由二次函数顶点式:,得出顶点坐标为,根据这个知识点即可得出此二次函数的顶点坐标.【详解】解:由题知:抛物线的顶点坐标为:故选:D.【点睛】本题主要考查的二次函数的顶点式的特点以及顶点坐标的求法,掌握二次函数的顶点式是解题的关键.4、C【分析】根据二次函数的性质分别判断后即可确定正确的选项.【详解】解:A、∵a=1>0,

∴抛物线开口向上,选项A不正确;

B、∵-=,

∴抛物线的对称轴为直线x=,选项B不正确;

C、当x=时,y=-,

∴当x=时,y有最小值是-,选项C正确;

D、∵a>0,抛物线的对称轴为直线x=,

∴当x>时,y随x值的增大而增大,选项D不正确.

故选:C.【点睛】本题考查了二次函数的性质以及二次函数的图象,利用二次函数的性质逐一分析四个选项的正误是解题的关键.5、A【分析】将点代入解析式中,即可求出m的值.【详解】将点代入中,得:故选A.【点睛】此题考查的是根据点所在的图象求点的纵坐标,解决此题的关键是将点的坐标代入解析式即可.6、C【分析】根据抛物线开口向下,对称轴在y轴右侧,以及抛物线与坐标轴的交点,结合图象即可作出判断.【详解】解:由题意得:a<0,c>0,=1>0,∴b>0,即abc<0,选项①错误;-b=2a,即2a+b=0,选项②正确;当x=1时,y=a+b+c为最大值,则当m≠1时,a+b+c>am2+bm+c,即当m≠1时,a+b>am2+bm,选项③正确;由图象知,当x=-1时,ax2+bx+c=a-b+c<0,选项④错误;∵ax12+bx1=ax22+bx2,∴ax12-ax22+bx1-bx2=0,(x1-x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,∴x1+x2=,所以⑤正确.所以②③⑤正确,共3项,故选:C.【点睛】此题考查了二次函数图象与系数的关系,解本题的关键二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.7、B【详解】解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.8、C【分析】根据题意可以求出各段对应的函数解析式,再根据函数解析式即可判断哪个选项是符合题意的,本题得以解决.【详解】解:∵菱形ABCD的边长为4cm,∠A=60°,动点P,Q同时从点A出发,都以1cms的速度分别沿A→B→C和A→D→C的路径向点C运动,

∴△ABD是等边三角形,

∴当0<x≤4时,

y=×4×4×sin60°−x•sin60°x=4−x2=x2+4;

当4<x≤8时,

y=×4×4×sin60°−×(8−x)×(8−x)×sin60°=−x2+4x−12=−(x−8)2+4;∴选项C中函数图像符合题意,故选:C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,求出各段对应的函数解析式,利用数形结合的思想解答.9、D【解析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】抛物线的对称轴为直线x=-=3,∵y1>y2,∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,∴|x1-3|>|x2-3|.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10、B【解析】分析:必然事件就是一定发生的事件,根据定义即可作出判断.解答:解:A、不可能发生,是不可能事件,故本选项错误,B、是必然事件,故正确,C、不一定发生,是随机事件,故本选项错误,D、不一定发生,是随机事件,故本选项错误.故选B.11、A【解析】把x=1代入方程x2+mx﹣2=0得到关于m的一元一次方程,解之即可.【详解】把x=1代入方程x2+mx﹣2=0得:1+m﹣2=0,解得:m=1.故选A.【点睛】本题考查了一元二次方程的解,正确掌握一元二次方程的解的概念是解题的关键.12、D【解析】根据特殊角的三角函数值及负指数幂的定义求解即可.【详解】故选:D【点睛】本题考查了特殊角的三角函数值及负指数幂的定义,比较简单,掌握定义仔细计算即可.二、填空题(每题4分,共24分)13、1【分析】由题意根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:设底面半径为rcm,12π=πr×4,解得r=1.故答案为:1.【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥侧面积的计算公式.14、2【分析】根据两根关系列出等式,再代入第二个代数式计算即可.【详解】∵x1、x2是方程x2﹣kx+1=0的两个根,∴x1+x2=k,x1x2=1.∵x1+x2﹣x1x2=k﹣1=4,∴k=2.故答案为:2.【点睛】本题考查一元二次方程的两根关系,关键在于熟练掌握基础知识,代入计算.15、1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=1.故答案为116、<【分析】比较与的值即可.【详解】∵,,,∴,故答案为:.【点睛】此题考查三角函数值,熟记特殊角度的三角函数值是解题的关键.17、【分析】根据菱形的判定方法直接就可得出推出菱形的概率.【详解】根据“对角线互相垂直的平行四边形是菱形”直接判断①符合题意;根据“一组邻边相等的平行四边形是菱形”可直接判断②符合题意;根据“对角线相等的平行四边形是矩形”,所以③不符合菱形的判定方法;,,BC=CD,是菱形,故④符合题意;推出菱形的概率为:.故答案为.【点睛】本题主要考查菱形的判定及概率,熟记菱形的判定方法是解题的关键,然后根据概率的求法直接得出答案.18、【分析】过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,则四边形DGBF是矩形,由矩形的性质得到BG=DF,DG=FB.由△BFC是等腰直角三角形,得到FC=BF=1.设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,由AC=AB,利用勾股定理得到AD=16x-1.证明△FEB∽△DEA,根据相似三角形的对应边成比例可求出x的值,进而得到AD,DE的长.在Rt△ADE中,由勾股定理即可得出结论.【详解】如图,过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,∴四边形DGBF是矩形,∴BG=DF,DG=FB.∵∠BCD=45°,∴△BFC是等腰直角三角形.∵BC=,∴FC=BF=1.设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,∵AC=AB,∴,∴,解得:AD=16x-1.∵FB∥AD,∴△FEB∽△DEA,∴,∴,∴18x1-16x+1=0,解得:x=或x=.当x=时,7x-1<0,不合题意,舍去,∴x=,∴AD=16x-1=6,DE=9x=,∴AE=.故答案为:.【点睛】本题考查了矩形的判定与性质以及相似三角形的判定与性质.求出AD=16x-1是解答本题的关键.三、解答题(共78分)19、(1)40人;1;(2)平均数是15;众数16;中位数15.【分析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.20、(1)y=﹣,y=﹣2x+1(2)S△CDE=140;(3)x≥10,或﹣4≤x<0【分析】(1)根据三角形相似,可求出点坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【详解】(1)由已知,OA=6,OB=1,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=把点A(6,0),B(0,1)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+1(2)当=﹣2x+1时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.21、(1)x=4.5;(2)(a)见解析;(b)见解析【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【详解】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;经检验,x=4.5是原方程的解;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为中心对称图形;.【点睛】此题主要考查分式方程及方格的作图,解题的关键是熟知分式方程的解法及轴对称图形与中心对称图形的特点.22、x1=﹣1,x2=﹣2【分析】利用因式分解法进行解答即可.【详解】解:方程分解得:(x+1)(x+2)=1,可得x+1=1或x+2=1,解得:x1=﹣1,x2=﹣2.【点睛】本题考查了一元二次方程的因式分解法,正确的因式分解是解答本题的关键.23、见解析【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,根据等角对等边可得AF=DF,再根据邻边相等的四边形是菱形可得结论.【详解】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形.【点睛】此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.24、(1)22%;(2)22元.【分析】(1)设年平均增长率为x,根据东部华侨城景区在238年春节长假期间,共接待游客达22万人次,预计在2222年春节长假期间,将接待游客达1.8万人次.列出方程求解即可;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得关于y的方程,解方程并对方程的解作出取舍即可.【详解】解:(1)设年平均增长率为x,由题意得:22(1+x)2=1.8,解得:x1=2.2=22%,x2=﹣2.2(舍).答:年平均增长率为22%;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得:(y﹣6)[322+32(25﹣y)]=6322,整理得:y2﹣41y+422

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论