2023届江西省九江市修水县数学九上期末监测模拟试题含解析_第1页
2023届江西省九江市修水县数学九上期末监测模拟试题含解析_第2页
2023届江西省九江市修水县数学九上期末监测模拟试题含解析_第3页
2023届江西省九江市修水县数学九上期末监测模拟试题含解析_第4页
2023届江西省九江市修水县数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若函数y=(m2-3m+2)x|m|-3是反比例函数,则m的值是()A.1 B.-2 C.±2 D.22.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A. B. C. D.13.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则的值为()A. B. C. D.4.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.5.如图,AB是圆O的直径,CD是圆O的弦,若,则()A. B. C. D.6.某同学用一根长为(12+4π)cm的铁丝,首尾相接围成如图的扇形(不考虑接缝),已知扇形半径OA=6cm,则扇形的面积是()A.12πcm2 B.18πcm2 C.24πcm2 D.36πcm27.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x,则可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)=11.52 D.8(1﹣x)=11.528.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.9.方程的解是()A. B. C., D.,10.某盏路灯照射的空间可以看成如图所示的圆锥,它的高米,底面半径米,则圆锥的侧面积是多少平方米(结果保留).()A. B. C. D.二、填空题(每小题3分,共24分)11.某居民小区为了解小区500户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只):65,70,85,74,86,78,74,92,82,1.根据统计情况,估计该小区这500户家庭每月一共使用塑料袋_________只.12.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_____cm.13.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为,则x=_______.14.当a=____时,关于x的方程式为一元二次方程15.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=__.16.如图,已知△ABC的三个顶点均在格点上,则cosA的值为_______.17.关于x的方程的两个根是﹣2和1,则nm的值为_____.18.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=_____.三、解答题(共66分)19.(10分)如图所示,是的直径,为弦,交于点.若,,.(1)求的度数;(2)求的长度.20.(6分)如图,P是正方形ABCD的边CD上一点,∠BAP的平分线交BC于点Q,求证:AP=DP+BQ.21.(6分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.22.(8分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).23.(8分)已知和是关于的一元二次方程的两个不同的实数根.(1)求的取值范围;(2)如果且为整数,求的值.24.(8分)已知抛物线(1)抛物线经过原点时,求的值;(2)顶点在轴上时,求的值.25.(10分)(1)解方程:;(2)图①②均为7×6的正方形网络,点A,B,C在格点上;(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可);(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可).26.(10分)如图1,直线y=2x+2分别交x轴、y轴于点A、B,点C为x轴正半轴上的点,点D从点C处出发,沿线段CB匀速运动至点B处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△DEC′与△BOC的重叠部分面积为S,点D的运动时间为t(秒),S与t的函数图象如图2所示.(1)VD,C坐标为;(2)图2中,m=,n=,k=.(3)求出S与t之间的函数关系式(不必写自变量t的取值范围).

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据反比例函数的定义,列出方程求解即可.【详解】解:由题意得,|m|-3=-1,

解得m=±1,

当m=1时,m1-3m+1=11-3×1+1=2,

当m=-1时,m1-3m+1=(-1)1-3×(-1)+1=4+6+1=11,

∴m的值是-1.

故选:B.【点睛】本题考查了反比例函数的定义,熟记一般式y=(k≠2)是解题的关键,要注意比例系数不等于2.2、B【分析】根据网格结构找出∠ABC所在的直角三角形,然后根据锐角的正切等于对边比邻边列式即可.【详解】解:∠ABC所在的直角三角形的对边是3,邻边是4,所以,tan∠ABC=.故选B.【点睛】本题考查了锐角三角函数的定义,熟练掌握网格结构找出直角三角形是解题的关键.3、B【解析】试题分析:∵DE∥BC,∴,∵,∴.故选B.考点:平行线分线段成比例.4、D【详解】解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的边长是1,∴AC=,∵AP=x,∴PC=-x,∴PF=FC=,∴BF=FE=1-FC=,∴S△PBE=BE•PF=,即(0<x<),故选D.【点睛】本题考查动点问题的函数图象.5、A【分析】根据同弧所对的圆周角相等可得,再根据圆直径所对的圆周角是直角,可得,再根据三角形内角和定理即可求出的度数.【详解】∵∴∵AB是圆O的直径∴∴故答案为:A.【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.6、A【分析】首先根据铁丝长和扇形的半径求得扇形的弧长,然后根据弧长公式求得扇形的圆心角,然后代入扇形面积公式求解即可.【详解】解:∵铁丝长为(12+4π)cm,半径OA=6cm,∴弧长为4πcm,∴扇形的圆心角为:=120°,∴扇形的面积为:=12πcm2,故选:A.【点睛】本题考查了扇形的面积的计算,解题的关键是了解扇形的面积公式及弧长公式,难度不大.7、C【分析】设平均每天票房的增长率为,根据第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,即可得出关于的一元二次方程.【详解】解:设平均每天票房的增长率为,根据题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.9、C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【详解】∵,∴,∴,∴,∴,.故选C.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.10、A【分析】根据勾股定理求得AB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,OB=6米,∴AB=10米,

∴圆锥的底面周长=2×π×6=12π米,

∴S扇形=lr=×12π×10=60π(米2).

故选:A.【点睛】本题考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,熟知圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.二、填空题(每小题3分,共24分)11、2【分析】先求出10户居民平均月使用塑料袋的数量,然后估计500户家庭每月一共使用塑料袋的数量即可.【详解】解:10户居民平均月使用塑料袋的数量为:(65+70+85+74+86+78+74+92+82+1)÷10=80,∴500×80=2(只),故答案为2.【点睛】本题考查统计思想,用样本平均数估计总体平均数,10户居民平均月使用塑料袋的数量是解答本题的关键.12、2或1【分析】分两种情况:(1)容器内水的高度在球形容器的球心下面;(2)容器内水的高度在球形容器的球心上面;根据垂径定理和勾股定理计算即可求解.【详解】过O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,则OC3(cm).分两种情况讨论:(1)容器内水的高度在球形容器的球心下面时,如图①,延长OC交⊙O于D,容器内水的高度为CD=OD﹣CO=5﹣3=2(cm);(2)容器内水的高度在球形容器的球心是上面时,如图②,延长CO交⊙O于D,容器内水的高度为CD=OD+CO=5+3=1(cm).则容器内水的高度为2cm或1cm.故答案为:2或1.【点睛】本题考查了垂径定理以及勾股定理,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意分类思想的应用.13、1【分析】直接以概率求法得出关于x的等式进而得出答案.【详解】解:由题意得:,解得,故答案为:1.【点睛】本题考查了概率的意义,正确把握概率的求解公式是解题的关键.14、≠±1【分析】方程是一元二次方程的条件是二次项次数不等于0,据此即可求得a的范围.【详解】根据题意得:a1-4≠0,解得:a≠±1.故答案是:≠±1.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.15、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解.【详解】解:y=0时,0=x2﹣4x+1,解得x1=1,x2=1∴线段AB的长为2,∵与y轴交点C(0,1),∴以AB为底的△ABC的高为1,∴S△ABC=×2×1=1,故答案为:1.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法.16、【解析】连接BD,根据勾股定理的逆定理判断出△ABD的形状,再由锐角三角函数的定义即可得出结论.【详解】解:如图,连接BD,

∵BD2=12+12=2,AB2=12+32=10,AD2=22+22=8,2+8=10,

∴△ABD是直角三角形,且∠ADB=90°,

∴.

故答案为:.【点睛】本题主要考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.17、﹣1【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入nm中即可求出结论.【详解】解:∵关于x的方程的两个根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案为:﹣1.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.18、4【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点睛】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.三、解答题(共66分)19、(1)120°;(2)1.【分析】(1)首先根据∠BAO=30°,AO∥BC利用两直线平行,内错角相等求得∠CBA的度数,然后利用圆周角定理求得∠AOC的度数,从而利用邻补角的定义求得∠AOD的度数.(2)首先根据,求得,在中,求得OE的值,将OE,OC的值代入即可得出.【详解】解:(1),,,,.(2),,.在中,.,.【点睛】本题考查了解直角三角形及圆周角定理,构造直角三角形是解题的关键.20、证明见解析.【解析】试题分析:根据旋转的性质得出∠E=∠AQB,∠EAD=∠QAB,进而得出∠PAE=∠E,即可得出AP=PE=DP+DE=DP+BQ.试题解析:证明:将△ABQ绕A逆时针旋转90°得到△ADE,由旋转的性质可得出∠E=∠AQB,∠EAD=∠QAB,又∵∠PAE=90°﹣∠PAQ=90°﹣∠BAQ=∠DAQ=∠AQB=∠E,在△PAE中,得AP=PE=DP+DE=DP+BQ.点睛:此题主要考查了旋转的性质,根据已知得出PE=DP+DE是解题关键.21、(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.1.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

点A(1,3)代入反比例函数y=,

得k=3,

∴反比例函数的表达式y=,

(2)把B(3,b)代入y=得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,

∴D(3,﹣1),设直线AD的解析式为y=mx+n,

把A,D两点代入得,,

解得m=﹣2,n=1,

∴直线AD的解析式为y=﹣2x+1,令y=0,得x=,

∴点P坐标(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.22、(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.23、(1);(2)-2【分析】(1)根据一元二次方程根有两个不同的实数根可得判别式△>0,解不等式求出k的取值范围即可;(2)根据一元二次方程根与系数的故选可得,,根据列不等式,结合(1)的结论可求出k的取值范围,根据k为整数求出k值即可.【详解】(1)∵方程有两个不同的实数根,∴△,解得:.∴的取值范围是.(2)∵和是关于的一元二次方程的两个不同的实数根,∴,,∵,∴,解得.又由(1),∴,∵k为整数,∴k的值为.【点睛】本题考查一元二次方程根的判别式及根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1和x2,那么x1+x2=,x1·x2=;判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握一元二次方程的判别式及韦达定理是解题关键.24、(1)m=;(2)m=4或m=﹣1【分析】(1)抛物线经过原点,则,由此求解;(2)顶点在轴上,则,由此可以列出有关的方程求解即可;【详解】解:(1)∵抛物线y=x2﹣2mx+3m+4经过原点,∴3m+4=0,解得:m=(2)∵抛物线y=x2﹣2mx+3m+4顶点在x轴上,∴b2﹣4ac=0,∴(﹣2m)2﹣4×1×(3m+4)=0,解得:m=4或m=﹣1【点睛】本题考查了二次函数的性质,熟练掌握二次函数的有关性质是解决此类题的关键.25、(1)x=4.5;(2)(a)见解析;(b)见解析【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【详解】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;经检验,x=4.5是原方程的解;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为中心对称图形;.【点睛】此题主要考查分式方程及方格的作图,解题的关键是熟知分式方程的解法及轴对称图形与中心对称图形的特点.26、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时,S=t2;②当点C′在CB的延长线上,S=−t2+t−;③当点E在x轴负半轴,S=t2−4t+1.【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论