版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省肥城市数学九上期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)2.在直角坐标系中,点关于坐标原点的对称点的坐标为()A. B. C. D.3.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A. B.C. D.4.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.15.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是()A. B.C. D.6.把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为().A. B.C. D.7.不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是()A. B. C. D.8.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A.3cm B.5cm C.6cm D.8cm9.下列事件中,是必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数为偶数B.三角形的内角和等于180°C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”10.下列说法正确的个数是()①相等的弦所对的弧相等;②相等的弦所对的圆心角相等;③长度相等的弧是等弧;④相等的弦所对的圆周角相等;⑤圆周角越大所对的弧越长;⑥等弧所对的圆心角相等;A.个 B.个 C.个 D.个二、填空题(每小题3分,共24分)11.已知抛物线与x轴只有一个公共点,则m=___________.12.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.13.如图,在矩形中,点为的中点,交于点,连接,下列结论:①;②;③;④若,则.其中正确的结论是______________.(填写所有正确结论的序号)14.一男生推铅球,铅球行进高度y与水平距离x之间的关系是,则铅球推出的距离是_____.此时铅球行进高度是_____.15.点在抛物线上,则__________.(填“>”,“<”或“=”).16.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.17.若二次函数的图象与x轴只有一个公共点,则实数n=______.18.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.三、解答题(共66分)19.(10分)分别用定长为a的线段围成矩形和圆.(1)求围成矩形的面积的最大值;(用含a的式子表示)(2)哪种图形的面积更大?为什么?20.(6分)如图,在平面直角坐标系中,矩形的顶点,,的坐标分别,,,以为顶点的抛物线过点.动点从点出发,以每秒个单位的速度沿线段向点匀速运动,过点作轴,交对角线于点.设点运动的时间为(秒).(1)求抛物线的解析式;(2)若分的面积为的两部分,求的值;(3)若动点从出发的同时,点从出发,以每秒1个单位的速度沿线段向点匀速运动,点为线段上一点.若以,,,为顶点的四边形为菱形,求的值.21.(6分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是1.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.22.(8分)如图,等边△ABC中,点D在AC上(CD<AC),连接BD.操作:以A为圆心,AD长为半径画弧,交BD于点E,连接AE.(1)请补全图形,探究∠BAE、∠CBD之间的数量关系,并证明你的结论;(2)把BD绕点D顺时针旋转60°,交AE于点F,若EF=mAF,求的值(用含m的式子表示).23.(8分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上一点,且BD=BA,求tan∠ADC的值.24.(8分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为米的正方形后,剩下的部分刚好能围成一个容积为米的无盖长方体箱子,且此长方体箱子的底面长比宽多米,现已知购买这种铁皮每平方米需元钱,算一算张大叔购回这张矩形铁皮共花了________元钱.25.(10分)有一个人患了流感,经过两轮传染后共有81人患了流感.每轮传染中平均一个人传染了几个人?按照这样的速度传染,第三轮将又有多少人被传染?26.(10分)已知:如图,正方形为边上一点,绕点逆时针旋转后得到.如果,求的度数;与的位置关系如何?说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】把抛物线解析式化为顶点式可求得答案.【详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【点睛】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.2、D【分析】根据关于原点对称的点的坐标特征:横、纵坐标都相反,进行判断即可.【详解】点A(-1,2)关于原点的对称点的坐标为(1,-2).故选:D.【点睛】本题考查点的坐标特征,熟记特殊点的坐标特征是关键.3、C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.4、C【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.5、D【解析】画树状图展示所有16种等可能的结果数,找出两次抽取的卡片上数字之和为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为10,所以两次抽取的卡片上数字之和为偶数的概率.故选D.【点睛】本题考查了列表法与树状图法.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.6、A【分析】如图,过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.【详解】解:如图所示:过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,
∴∠AEB=∠AFD=90°,
∵AD∥CB,AB∥CD,
∴四边形ABCD是平行四边形,
∵纸条宽度都为1,
∴AE=AF=1,
在△ABE和△ADF中,
∴△ABE≌△ADF(AAS),
∴AB=AD,
∴四边形ABCD是菱形.
∴BC=AB,
∵=sinα,
∴BC=AB=,
∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=.
故选:A.【点睛】本题考查菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD是菱形,利用三角函数求出BC的长.7、D【分析】利用概率公式直接求解即可.【详解】解:袋子装有个球,其中个红球,个白球,从中任意摸出一个球,则摸出的球是红球的概率是:故选:.【点睛】本题考查的是利用概率的定义求事件的概率.8、B【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.9、B【分析】根据事件发生的可能性大小判断相应事件的类型.【详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、A【分析】根据圆的相关知识和性质对每个选项进行判断,即可得到答案.【详解】解:在同圆或等圆中,相等的弦所对的弧相等;故①错误;在同圆或等圆中,相等的弦所对的圆心角相等;故②错误;在同圆或等圆中,长度相等的弧是等弧;故③错误;在同圆或等圆中,相等的弦所对的圆周角相等;故④错误;在同圆或等圆中,圆周角越大所对的弧越长;故⑤错误;等弧所对的圆心角相等;故⑥正确;∴说法正确的有1个;故选:A.【点睛】本题考查了弧,弦,圆心角,圆周角定理,要求学生对基本的概念定理有透彻的理解,解题的关键是熟练掌握所学性质定理.二、填空题(每小题3分,共24分)11、【解析】试题分析:根据抛物线解析式可知其对称轴为x=,根据其与x轴只有一个交点,可知其顶点在x轴上,因此可知x=时,y=0,代入可求得m=.点睛:此题主要考查了二次函数的图像与性质,解题关键是明确与x轴只有一个交点的位置是抛物线的顶点在x轴上,因此可求出对称轴代入即可.12、或【解析】由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点即可.【详解】解:由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为或.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C点.13、①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB,FE交于点G,根据ASA可证明△AEF≌△BEG,可得AF=BG,EF=EG,进一步即可求得AF、BC与CF的关系,S△CEF与S△EAF+S△CBE的关系,进而可判断②与③;由,结合已知和锐角三角函数的知识可得,进一步即可根据AAS证明结论④;问题即得解决.【详解】解:∵,,∵四边形ABCD是矩形,∴∠B=90°,∴,,所以①正确;延长CB,FE交于点G,如图,在△AEF和△BEG中,∵∠FAE=∠GBE=90°,AE=BE,∠AEF=∠BEG,∴△AEF≌△BEG(ASA),∴AF=BG,EF=EG,∴S△CEG=S△CEF,∵CE⊥EG,∴CG=CF,∴AF+BC=BG+BC=CG=CF,所以②错误;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正确;若,则,,,在和中,∵∠CEF=∠D=90°,,CF=CF,≌,所以④正确.综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.14、12【分析】铅球落地时,高度,把实际问题理解为当时,求x的值即可.【详解】铅球推出的距离就是当高度时x的值当时,解得:(不合题意,舍去)则铅球推出的距离是1.此时铅球行进高度是2故答案为:1;2.【点睛】本题考查了二次函数的应用,理解铅球推出的距离就是当高度时x的值是解题关键.15、>【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.【详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.故答案为:>.【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.16、6【解析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得,代入数据可得答案.【详解】如图,在中,米,米,易得,,即,米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.17、1.【解析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案为1.18、1【解析】试题分析:根据题意可得圆心角的度数为:,则S==1.考点:扇形的面积计算.三、解答题(共66分)19、(1)矩形面积的最大值为;(2)圆的面积大.【分析】(1)设矩形的一边长为b,则另外一边长为b,由S矩形=b(b)=﹣(b)2可得答案;(2)设圆的半径为r,则r,知S圆=πr2,比较大小即可得.【详解】(1)设矩形的一边长为b,则另外一边长为b,S矩形=b(b)=﹣(b)2,∴矩形面积的最大值为;(2)设圆的半径为r,则r,S圆=πr2.∵4π<16,∴,∴S圆>S矩,∴圆的面积大.【点睛】本题考查了列代数式与二次函数的最值,用到的知识点是圆的面积公式、矩形的面积公式、二次函数的最值,关键是根据题意列出代数式.20、(1);(2)的值为或;(3)的值为或.【分析】(1)运用待定系数法求解;(2)根据已知,证,,可得或;(3)分两种情况:当为菱形的对角线时:由点,的横坐标均为,可得.求直线的表达式为,再求N的纵坐标,得,根据菱形性质得,可得.在中,得.同理,当为菱形的边时:由菱形性质可得,.由于,所以.结合三角函数可得.【详解】解:(1)因为,矩形的顶点,,的坐标分别,,,所以A的坐标是(1,4),可设函数解析式为:把代入可得,a=-1所以,即.(2)因为PE∥CD所以可得.由分的面积为的两部分,可得所以,解得.所以,的值为=(秒).或,解得.所以,的值为.综上所述,的值为或.(3)当为菱形的对角线时:由点,的横坐标均为,可得.设直线AC的解析式为,把A,C的坐标分别代入可得解得所以直线的表达式为.将点的横坐标代入上式,得.即.由菱形可得,.可得.在中,得.解得,,t2=4(舍).当为菱形的边时:由菱形性质可得,.由于,所以.因为.由,得.解得,,综上所述,的值为或.【点睛】考核知识点:相似三角形,二次函数,三角函数.分类讨论,数形结合,运用菱形性质和相似三角形性质或三角函数定义构造方程,再求解是解题关键.21、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把点A的横坐标代入一次函数解析式求出纵坐标,确定出点A的坐标,代入反比例解析式求出k的值即可;
(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.【详解】解:(1)令x=1,代入y=x﹣2,则y=1,∴A(1,1),∵点A(1,1)在双曲线y=(k≠2)上,∴k=1;(2)联立得:,解得或,即B(﹣1,﹣1),如图所示:当点M在N右边时,n的取值范围是n>1或﹣1<n<2.【点睛】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22、(1)图形见解析,∠BAE=2∠CBD,理由见解析;(2),理由见解析【分析】(1)根据圆周角和圆心角的关系得:2∠BDH=∠BAE,由等腰三角形的性质得HD∥BC,由平行线的性质可得结论;
(2)如图2,作辅助线,由旋转得:△BDM是等边三角形,证明△AMB≌△CDB(SAS),得AM=CD,∠MAB=∠C=60°,证明△ABD∽△DFE,设AF=a,列比例式可得结论【详解】(1)如图1,∠BAE=2∠CBD.设弧DE与AB交于H,连接DH,∴2∠BDH=∠BAE,又∵AD=AH,AB=AC,∠BAC=60°,∴∠AHD=∠ADH=60°,∠ABC=∠C=60°,∴∠AHD=∠ABC,∴HD∥BC,∴∠DBC=∠HDB,∴∠BAE=2∠DBC;(2)如图2,连接AM,BM,由旋转得:BD=DM,∠BDM=60°,∴△BDM是等边三角形,∴BM=BD,∠MBD=60°,∵∠ABM+∠ABD=∠ABD+∠CBD,∴∠ABM=∠CBD,∵△ABC是等边三角形,∴AB=AC,∴△AMB≌△CDB(SAS),∴AM=CD,∠MAB=∠C=60°,∵∠AGM=∠BGD,∠MAB=∠BDM=60°,∴∠AMD=∠ABD,由(1)知:AD=AE,∴∠AED=∠ADE,∵∠EDF=∠BAD,∴△ABD∽△DFE,∴∠EFD=∠ABD=∠AFM=∠AMD,∴AF=AM=CD,设AF=a,则EF=ma,AE=a+ma=(m+1)a,∴AB=AD+CD=AE+CD=(m+2)a,由△ABD∽△DFE,∴==.【点睛】本题考查全等三角形的性质和判定、相似三角形的判定和性质、等边三角形、三角形内角和和外角的性质等知识,解题的关键灵活应用所学知识解决问题,学会利用辅助线,构建全等三角形解决问题,属于中考常考题型.23、2﹣.【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年新版中国交叉反射太阳灶项目可行性研究报告
- 2024-2030年撰写:中国双面学生实验室行业发展趋势及竞争调研分析报告
- 2024-2030年影音线材搬迁改造项目可行性研究报告
- 2024-2030年对溴苄胺公司技术改造及扩产项目可行性研究报告
- 2024-2030年国家甲级资质:中国垃圾焚烧烟气脱硝(SNCR+SCR)融资商业计划书
- 2024-2030年国家甲级资质:中国冰箱内胆融资商业计划书
- 2024-2030年前端装载机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年全球市场喷干水果粉市场销售规模及投资盈利预测报告
- 2024-2030年全球及中国虚拟数据优化器行业前景动态及发展趋势预测报告
- 2024-2030年全球及中国盐酸硫胺行业产销规模及需求趋势预测报告
- 2024-2025学年高二上学期期末数学试卷(提高篇)(含答案)
- 2025年安全生产目标实施计划
- 福建百校2025届高三12月联考历史试卷(含答案解析)
- 2024年山西省建筑安全员《B证》考试题库及答案
- 2023年益阳市安化县招聘乡镇卫生院护理人员笔试真题
- 《基于PLC的智能交通灯控制系统设计》10000字(论文)
- 首都经济贸易大学《微积分》2021-2022学年第一学期期末试卷
- 人音版音乐七年级上册《父亲的草原母亲的河》课件
- 2024年度短视频内容创作服务合同3篇
- 介入治疗并发症
- 铸牢中华民族共同体意识-形考任务1-国开(NMG)-参考资料
评论
0/150
提交评论