浙江部分地区2025届九年级数学第一学期期末调研模拟试题含解析_第1页
浙江部分地区2025届九年级数学第一学期期末调研模拟试题含解析_第2页
浙江部分地区2025届九年级数学第一学期期末调研模拟试题含解析_第3页
浙江部分地区2025届九年级数学第一学期期末调研模拟试题含解析_第4页
浙江部分地区2025届九年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江部分地区2025届九年级数学第一学期期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.2.已知M(1,2),则M关于原点的对称点N落在()A.的图象上 B.的图象上 C.的图象上 D.的图象上3.关于的一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.不能确定4.掷一枚质地均匀的硬币次,下列说法中正确的是()A.可能有次正面朝上 B.必有次正面朝上C.必有次正面朝上 D.不可能次正面朝上5.如图,在方格纸中,点A,B,C都在格点上,则tan∠ABC的值是()A.2 B. C. D.6.若关于的一元二次方程有实数根,则实数m的取值范围是()A. B. C. D.7.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是()A. B. C. D.108.下列各式中,均不为,和成反比例关系的是()A. B. C. D.9.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是(

)A.2 B.4 C.6 D.810.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB,若∠B=25°,则∠P的度数为()A.25° B.40° C.45° D.50°11.如图,已知在中,,于,则下列结论错误的是()A. B. C. D.12.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,Rt△ABC中,∠ACB=90°,BC=3,tanA=,将Rt△ABC绕点C顺时针旋转90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.14.如图是二次函数y=ax2+bx+c的部分图象,由图象可知方程ax2+bx+c=0的解是_________.15.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________,点的坐标是__________.16.如图,在半径为5的⊙中,弦,是弦所对的优弧上的动点,连接,过点作的垂线交射线于点,当是以为腰的等腰三角形时,线段的长为_____.17.如图,△ABC内接于⊙O,若∠A=α,则∠OBC=_____.18.点M(3,)与点N()关于原点对称,则________.三、解答题(共78分)19.(8分)如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.20.(8分)如图,△ABC中,∠BAC=120o,以BC为边向外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60o后到△ECD的位置.若AB=6,AC=4,求∠BAD的度数和AD的长.21.(8分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.22.(10分)如图,有一个三等分数字转盘,小红先转动转盘,指针指向的数字记下为,小芳后转动转盘,指针指向的数字记下为,从而确定了点的坐标,(若指针指向分界线,则重新转动转盘,直到指针指向数字为止)(1)小红转动转盘,求指针指向的数字2的概率;(2)请用列举法表示出由,确定的点所有可能的结果.(3)求点在函数图象上的概率.23.(10分)如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.24.(10分)如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)若要围建的菜园为100m2时,求该莱园的长.(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?25.(12分)某商品的进价为每件20元,售价为每件30元,毎个月可买出180件:如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,毎件商品的售价为多少元时,每个月的销售利润将达到1920元?26.如图,抛物线与x轴相交于A,B两点,与y轴相交于点C.点D是直线AC上方抛物线上一点,过点D作y轴的平行线,与直线AC相交于点E.(1)求直线AC的解析式;(2)当线段DE的长度最大时,求点D的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、A【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数得出N的坐标,再根据各函数关系式进行判断即可.【详解】点M(1,2)关于原点对称的点N的坐标是(-1,-2),∴当x=-1时,对于选项A,y=2×(-1)=-2,满足条件,故选项A正确;对于选项B,y=(-1)2=1≠-2故选项B错误;对于选项C,y=2×(-1)2=2≠-2故选项C错误;对于选项D,y=-1+2=1≠-2故选项D错误.故选A.【点睛】本题考查了关于原点对称的点的坐标,以及函数图象上点的坐标特征,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.3、A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.4、A【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:.掷一枚质地均匀的硬币次,可能有2次正面朝上,故本选项正确;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;故选:.【点睛】本题考查的知识点是随机事件的概念,理解随机事件的概念是解题的关键.5、A【分析】根据直角三角形解决问题即可.【详解】解:作AE⊥BC,∵∠AEC=90°,AE=4,BE=2,∴tan∠ABC=,故选:A.【点睛】本题主要考查了解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6、B【分析】因为一元二次方程有实数根,所以,即可解得.【详解】∵一元二次方程有实数根∴解得故选B【点睛】本题考查一元二次方程根的判别式,掌握方程根的个数与根的判别式之间关系是解题关键.7、B【解析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【详解】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或-2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选B.【点睛】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.8、B【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【详解】解:A.,则,x和y不成比例;B.,即7yx=5,是比值一定,x和y成反比例;C.,x和y不成比例;D.,即y:x=5:8,是比值一定,x和y成正比例.故选B.【点睛】此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.9、D【解析】先根据三角形中位线的性质得到DE=AB,从而得到相似比,再利用位似的性质得到△DEF∽△ABC,然后根据相似三角形的面积比是相似比的平方求解即可.【详解】∵点D,E分别是OA,OB的中点,∴DE=AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△ABC,∴=,∴△ABC的面积=2×4=8故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.10、B【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.11、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【详解】由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;

∵Rt△ABC中,∠ACB=90°,CD⊥AB,

∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;

故选:A.【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.12、B【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选B.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解二、填空题(每题4分,共24分)13、或【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tanA==,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴=,∴=,解得:DF=;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴点H为切点,DH为⊙F的直径,∴△DEC∽△DBH,∴=,∴=,∴DH=,∴DF=,综上所述,当FD=或时,⊙F与Rt△ABC的边相切,故答案为:或.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.14、,【详解】解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是-1.

所以,.

故答案是:,.【点睛】考查抛物线与x轴的交点,抛物线与x轴两个交点的横坐标的和除以2后等于对称轴.15、(2,2)【分析】根据坐标系中,以点为位似中心的位似图形的性质可得点D的坐标,过点C作CM⊥OD于点M,根据含30°角的直角三角形的性质,可求点C的坐标.【详解】∵与是以点为位似中心的位似图形,相似比为,点的坐标是,∴点D的坐标是(8,0),∵,,∴∠D=30°,∴OC=OD=×8=4,过点C作CM⊥OD于点M,∴∠OCM=30°,∴OM=OC=×2=2,CM=OM=2,∴点C的坐标是(2,2).故答案是:(2,2);(8,0).【点睛】本题主要考查直角坐标系中,位似图形的性质和直角三角形的性质,添加辅助线,构造直角三角形,是解题的关键.16、8或【解析】根据题意,以为腰的等腰三角形有两种情况,当AB=AP时,利用垂径定理及相似三角形的性质列出比例关系求解即可,当AB=BP时,通过角度运算,得出BC=AB=8即可.【详解】解:①当AB=AP时,如图,连接OA、OB,延长AO交BP于点G,故AG⊥BP,过点O作OH⊥AB于点H,∵在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,∴,由垂径定理可知,∴,在Rt△OAH中,在Rt△CAP中,,且∴,在Rt△PAG与Rt△PCA中,∠GPA=∠APC,∠PGA=∠PAC,∴Rt△PAG∽Rt△PCA∴,则,∴;②当AB=BP时,如下图所示,∠BAP=∠BPA,∴在Rt△PAC中,∠C=90°-∠BPA=90°-∠BAP=∠CAB,∴BC=AB=8故答案为8或【点睛】本题考查了圆的性质及圆周角定理、相似三角形的性质、等腰三角形的判定等知识点,综合性较强,难度较大,解题的关键是灵活运用上述知识进行推理论证.17、90°﹣α.【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC的度数.【详解】连接OC.∵∠BOC=2∠BAC,∠BAC=α,∴∠BOC=2α.∵OB=OC,∴∠OBC故答案为:.【点睛】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.18、-6【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,列方程求解即可.【详解】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴b+3=0,a-1+4=0,即:a=﹣3且b=﹣3,∴a+b=﹣6【点睛】本题考查关于原点对称的点的坐标,掌握坐标变化规律是本题的解题关键.三、解答题(共78分)19、(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE=45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【详解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵点B、C关于原点对称,点B(a,a+1)(a>0),∴OB=OC=5,点C(﹣a,﹣a﹣1),∴5=,∴a=3,∴点B(3,4),∴点C(﹣3,﹣4);(2)∵点B(3,4),点C(﹣3,﹣4),点A(﹣5,0),∴BC=10,AB=4,AC=2,∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,∵DE平分∠BDC,∴∠BDE=∠CDE=45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=5,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.20、AD=10,∠BAD=60°.【解析】先证明△ADE是等边三角形,再推出A,C,E共线;由于∠ADE=60°,根据旋转得出AB=CE=6,求出AE即可.【详解】解:由旋转可知:△ABD≌△ECD∴AB=EC=6,∠BAD=∠EAD=ED∵∠ADE=60°∴△ADE是等边三角形∴AE=AD∠E=∠DAE=60°∴∠BAD=60°∵∠BAC=120°∴∠DAC=60°=∠DAE∴C在AE上∴AD=AC+CE=4+6=10.【点睛】本题考查的知识点是旋转的性质,等边三角形的性质,解题的关键是熟练的掌握旋转的性质,等边三角形的性质.21、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S△PAB=S△BPO+S△APO-S△AOB,设P求出关于n的函数式,从而求S△PAB的最大值.(3)求点D的坐标,设D,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点,使?根据以上条件和结论可知∠CAD=120°,是∠CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出这样的点,就存在Q点.【详解】解:抛物线顶点为可设抛物线解析式为将代入得抛物线,即连接,设点坐标为当时,最大值为存在,设点D的坐标为过作对称轴的垂线,垂足为,则在中有化简得(舍去),∴点D(,-3)连接,在中在以为圆心,为半径的圆与轴的交点上此时设点为(0,m),AQ为的半径则AQ²=OQ²+OA²,6²=m²+3²即∴综上所述,点坐标为故存在点Q,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.22、(1);(2)见解析,共9种,;(3)【分析】(1)转动一次有三种可能,出现数字2只有一种情况,据此可得出结果;

(2)根据题意列表或画树状图即可得出所有可能的结果;(3)可以得出只有(1,2)、(2,3)在函数的图象上,即可求概率.【详解】解:(1)根据题意可得,指针指向的数字2的概率为;(2)列表,得:或画树状图,得:由列表或树状图可得可能的情况共有9种,分别为:;(3)解:由题意以及(2)可知:满足的有:,∴点在函数y=x+1图象上的概率为.【点睛】本题考查一次函数的图象上的点,等可能事件的概率;能够列出表格或树状图是解题的关键.23、(1)证明见解析;(2)证明见解析;【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为⊙O的切线,只要证明∠ODE=90°即可.【详解】(1)连接AD;∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂线.∴AB=AC.(2)连接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠ODE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论