版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列方程中是一元二次方程的是()A. B. C. D.2.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB交于点E,则A′E的长为()A.3 B.3.2 C.3.5 D.3.63.已知,满足,则的值是().A.16 B. C.8 D.4.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2) B.(2,2) C.(−2,2) D.(2,−2)5.函数的自变量的取值范围是()A. B. C. D.且6.在平面直角坐标系中,二次函数()的图象如图所示,现给出以下结论:①;②;③;④(为实数)其中结论错误的有()A.1个 B.2个 C.3个 D.4个7.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.8.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥19.点在反比例函数的图像上,则的值为()A. B. C. D.10.一元二次方程x2﹣16=0的根是(
)A.x=2
B.x=4
C.x1=2,x2=﹣2
D.x1=4,x2=﹣4二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.12.一中和二中举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:学校参赛人数平均数中位数方差一中45838682二中458384135某同学分析上表后得到如下结论:.①一中和二中学生的平均成绩相同;②一中优秀的人数多于二中优秀的人数(竞赛得分85分为优秀);③二中成绩的波动比一中小.上述结论中正确的是___________.(填写所有正确结论的序号)13.已知,则的值为______.14.如图,□中,,,的周长为25,则的周长为__________.15.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.16.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.17.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.18.已知四条线段a、2、6、a+1成比例,则a的值为_____.三、解答题(共66分)19.(10分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.20.(6分)已知:关于x的方程,根据下列条件求m的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.21.(6分)在Rt△ABC中,AC=BC,∠C=90°,求:(1)cosA;(2)当AB=4时,求BC的长.22.(8分)如图,AB为⊙O的直径,弦AC的长为8cm.(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧于点E;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.23.(8分)解方程(2x+1)2=3(2x+1)24.(8分)如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.(1)求抛物线的表达式;(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).①当为何值时,得面积最小?②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.25.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)26.(10分)解下列方程(1)(2)
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一元二次方程的定义依次判断后即可解答.【详解】选项A,是一元一次方程,不是一元二次方程;选项B,是二元二次方程,不是一元二次方程;选项C,是一元二次方程;选项D,是分式方程,不是一元二次方程.故选C.【点睛】本题考查了一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程是解决问题的关键.2、D【解析】如图,过点D作DF⊥AB,可证四边形EFDC'是矩形,可得C'E=DF,通过证明△BDF∽△BAC,可得,可求DF=2.4=C'E,即可求解.【详解】如图,过点D作DF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB==10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴,∴∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知旋转的定义、矩形的性质及相似三角形的判定与性质.3、A【分析】先把等式左边分组因式分解,化成非负数之和等于0形式,求出x,y即可.【详解】由得所以=0,=0所以x=-2,y=-4所以=(-4)-2=16故选:A【点睛】考核知识点:因式分解运用.灵活拆项因式分解是关键.4、D【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),
则点B关于x轴的对称点C的坐标是(2,-2),故答案为D5、C【解析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】由题意得,且,
解得:.
故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.6、B【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线可知:,,对称轴,∴,∴,故①错误;②由对称轴可知:,∴,,故②错误;③关于的对称点为,∴时,,故③正确;④当时,y的最小值为,∴时,,∴,故④正确故选:B.【点睛】本题考查了二次函数图象与系数的关系,结合图象得出系数之间的关系是解题的关键.7、C【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.8、C【分析】根据一元二次方程的根的判别式列不等式求解.【详解】解:∵方程有实数根∴△=4-4a≥0,解得a≤1故选C.【点睛】本题考查一元二次方根的判别式,熟记公式正确计算是本题的解题关键.9、B【解析】把点M代入反比例函数中,即可解得K的值.【详解】解:∵点在反比例函数的图像上,∴,解得k=3.【点睛】本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.10、D【解析】本题考查了一元二次方程的解法,移项后即可得出答案.【详解】解:16=x2,x=±1.故选:D【点睛】本题考查了一元二次方程的解法,熟悉掌握一元二次方程的解法是解决本题的关键.二、填空题(每小题3分,共24分)11、【分析】过点A作AH⊥DE,垂足为H,由旋转的性质可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根据等腰直角三角形的性质可得∠HAE=45°,AH=3,进而得∠HAF=30°,继而求出AF长即可求得答案.【详解】过点A作AH⊥DE,垂足为H,∵∠BAC=90°,AB=AC,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案为.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.12、①②【分析】根据表格中的数据直接得出平均数相同,再根据一中成绩的中位数86>85可判断一中优秀人数较多,最后根据方差越大,成绩波动越大判断波动性.【详解】由表格数据可知一中和二中的平均成绩相同,故①正确;∵一中成绩的中位数86>85,二中成绩的中位数84<85,竞赛得分85分为优秀∴一中优秀的人数多于二中优秀的人数故②正确;二中的方差大于一中,则二中成绩的波动比一中大,故③错误;故答案为:①②【点睛】本题考查平均数,中位数与方差,难度不大,熟练掌握基本概念是解题的关键.13、【分析】设=k,用k表示出a、b、c,代入求值即可.【详解】解:设=k,∴a=2k,b=3k,c=4k,∴==.故答案是:.【点睛】本题考查了比例的性质,涉及到连比时一般假设比值为k,这是常用的方法.14、2【分析】根据平行四边形的性质可得出△ABD≌CDB,求得△ABD的周长,利用三角形相似的性质即可求得△DEF的周长.【详解】解:∵EF∥AB,DE:AE=2:3,
∴△DEF∽△DAB,,∴△DEF与△ABD的周长之比为2:1.
又∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,BD=DB,
∴△ABD≌△CDB(SSS),又△BDC的周长为21,∴△ABD的周长为21,
∴△DEF的周长为2,
故答案为:2.【点睛】本题考查了相似三角形的判定与性质,理解相似三角形的周长比与相似比的关系是解题的关键.15、1【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有个,第二层最多有个,第三层最多有个则n的最大值是故答案为:1.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.16、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.17、【解析】连接OE、OD′,作OH⊥ED′于H,通过证得AEO≌△HEO(AAS),AE=EH=ED=2,设OB=OE=x.则AO=6﹣x,根据勾股定理得x2=22+(6﹣x)2,解方程即可求得结论.【详解】解:连接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四边形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切线,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴设OB=OE=x.则AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案为:.【点睛】本题是圆的综合题目,考查了切线的性质和判定、正方形的性质、勾股定理,方程,全等三角形的判定与性质等知识;本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.18、3【分析】由四条线段a、2、6、a+1成比例,根据成比例线段的定义,即可得=,即可求得a的值.【详解】解:∵四条线段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合题意,舍去).故答案为3.【点睛】本题考查了线段成比例的定义:若四条线段a,b,c,d成比例,则有a:b=c:d.三、解答题(共66分)19、(1);(2).【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是=.考点:概率的计算.20、(1);(2)【分析】(1)将1代入原方程,可得关于m的方程,解此方程即可求得答案;(2)利用根与系数的关系列出方程即可求得答案.【详解】(1)方程的根1代入方程得:=0,整理得:=0,∵∴故答案为:(2)方程两个实数根的和为方程两个实数根的积为,依题意得:,即:,分解因式得:解得:或2,当时,原方程为:,方程有实数根;当时,原方程为:,,方程没有实数根,∴不符合题意,舍去;m的值为:【点睛】本题考查了根与系数的关系及求解一元二次方程,熟练掌握一元二次方程根与系数的关系是解题的关键.21、(1);(2)【解析】(1)根据等腰直角三角形的判定得到△ABC为等腰直角三角形,则∠A=45°,然后利用特殊角的三角函数值求解即可;(2)根据∠A的正弦求解即可.【详解】∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴cosA=cos45°=,∴BC=AB=2,【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.22、(1)见解析;(2)10cm.【分析】(1)以点A,点C为圆心,大于AC为半径画弧,两弧的交点和点O的连线交弦AC于点D,交优弧于点E;(2)由垂径定理可得AD=CD=4cm,由勾股定理可求OA的长,即可求解.【详解】(1)如图所示:(2)∵DE⊥AC,∴AD=CD=4cm,∵AO2=DO2+AD2,∴AO2=(DE﹣AO)2+16,∴AO=5,∴AB=2AO=10cm.【点睛】本题考查了圆的有关知识,勾股定理,灵活运用勾股定理求AO的长是本题的关键.23、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.24、(1);(2)①;②【分析】(1)根据点B的坐标可得出点A,C的坐标,代入抛物线解析式即可求出b,c的值,求得抛物线的解析式;(2)①过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,将三角形的面积用含t的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A(0,3),C(4,0),∵抛物线经过A、B两点,∴,解得,,∴抛物线的表达式为:.(2)①∵四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国一次性婴儿止尿片数据监测研究报告
- 2024年中国骑马针市场调查研究报告
- 2024年中国洁具清洗剂市场调查研究报告
- 2024八年级数学上册第二章分式与分式方程2分式的乘除法第1课时分子分母都是单项式的分式的乘除与乘方习题课件鲁教版五四制
- 2024年南昌客运驾驶员理论知识题库
- 2024年红河道路旅客运输考卷
- 2024年自贡驾校考试客运从业资格证考试题库
- 给小学捐款倡议书(22篇)
- 清明节安全教育主题班会教案(12篇)
- 资产清查自查报告
- 吹膜操作法概述
- 数据中心机房建筑装修工程施工方案
- 思科交换机简单配置(通用教程)
- 现浇箱梁重大危险源告知牌
- 英语学习经验交流ppt
- 仪器柜明细卡
- 华为性格测试攻略
- 小学生学习心理调查问卷(学生篇)
- Arbortext editor详细教程
- theBeatles披头士甲壳虫乐队简介
- 石方机械破除施工方案
评论
0/150
提交评论