2023届湖北省麻城思源学校数学九年级第一学期期末教学质量检测试题含解析_第1页
2023届湖北省麻城思源学校数学九年级第一学期期末教学质量检测试题含解析_第2页
2023届湖北省麻城思源学校数学九年级第一学期期末教学质量检测试题含解析_第3页
2023届湖北省麻城思源学校数学九年级第一学期期末教学质量检测试题含解析_第4页
2023届湖北省麻城思源学校数学九年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为()A. B. C. D.2.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象关于y轴对称C.图象位于第二、四象限 D.当x<0时,y随x的增大而减小3.已知点是一次函数的图像和反比例函数的图象的交点,当一次函数的值大于反比例函数的值时,的取值范围是()A.或 B.C.或 D.4.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为()A.1:5 B.4:5 C.2:10 D.2:55.下列函数,当时,随着的增大而减小的是()A. B. C. D.6.近年来,移动支付已成为主要支付方式之一.为了解某校800名学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:下面有四个推断:①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率为0.3;②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.45;③估计全校仅使用B支付的学生人数为200人;④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数为800元.其中合理推断的序号是()A.①② B.①③ C.①④ D.②③7.,,,π四个实数,任取一个数是无理数的概率为()A. B. C. D.18.下列计算错误的是()A. B. C. D.9.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20° B.40° C.70° D.80°10.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×105二、填空题(每小题3分,共24分)11.如图在平面直角坐标系中,若干个半径为个单位长度、圆心角为的扇形组成一条连续的曲线,点从原点出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位,在弧线上的速度为每秒个单位长度,则秒时,点的坐标是_______;秒时,点的坐标是_______.12.若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).则S=a+b+c的值的变化范围是_____.13.在中,若,则是_____三角形.14.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.点A(﹣1,1)关于原点对称的点的坐标是_____.16.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.17.如图,四边形是菱形,,对角线,相交于点,于,连接,则=_________度.18.若顺次连接四边形ABCD各边中点所得四边形为矩形,则四边形ABCD的对角线AC、BD之间的关系为_____.三、解答题(共66分)19.(10分)为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?20.(6分)已知关于x的方程x2+ax+16=0,(1)若这个方程有两个相等的实数根,求a的值(2)若这个方程有一个根是2,求a的值及另外一个根21.(6分)某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?22.(8分)天猫商城某网店销售童装,在春节即将将来临之际,开展了市场调查发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件;如果每件童装降价1元,那么平均每天可售出2件.(1)假设每件童装降价元时,每天可销售件,每件盈利元;(用含人代数式表示)(2)每件童装降价多少元时,平均每天盈利最多?每天最多盈利多少元?23.(8分)已知二次函数的图象经过点.(1)求这个函数的解析式;(2)画出它的简图,并指出图象的顶点坐标;(3)结合图象直接写出使的的取值范围.24.(8分)在学习概率的课堂上,老师提出问题:一口袋装有除颜色外均相同的2个红球1个白球和1个篮球,小刚和小明想通过摸球来决定谁去看电影,同学甲设计了如下的方案:第一次随机从口袋中摸出一球不放回;第二次再任意摸出一球,两人胜负规则如下:摸到“一红一白”,则小刚看电影;摸到“一白一蓝”,则小明看电影.同学甲的方案公平吗?请用列表或画树状图的方法说明;你若认为这个方案不公平,那么请你改变一下规则,设计一个公平的方案.25.(10分)某校的学生除了体育课要进行体育锻炼外,寒暑假期间还要自己抽时间进行体育锻炼,为了了解同学们假期体育锻炼的情况,开学时体育老师随机抽取了部分同学进行调查,按锻炼的时间x(分钟)分为以下四类:A类(),B类(),C类(),D类(),对调查结果进行整理并绘制了如图所示的不完整的折线统计图和扇形统计图,请结合图中的信息解答下列各题:(1)扇形统计图中D类所对应的圆心角度数为,并补全折线统计图;(2)现从A类中选出两名男同学和三名女同学,从以上五名同学中随机抽取两名同学进行采访,请利用画树状图或列表的方法求出抽到的学生恰好是一男一女的概率.26.(10分)计算(1)2sin30°-tan60°+tan45°;(2)tan245°+sin230°-3cos230°

参考答案一、选择题(每小题3分,共30分)1、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000963,这个数据用科学记数法可表示为9.63×.

故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=的图象上,故本选项错误;

B选项:反比例函数的图象关于原点中心对称,故本选项错误;

C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;

D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.

故选B.3、C【分析】把代入一次函数和反比例函数分别求出k和m,再将这两个函数解析式联立组成方程组,解出方程组再结合图象进行判断即可.【详解】解:依题意,得:2k+1=3和解得,k=1,m=6∴解得,或,函数图象如图所示:∴当一次函数的值大于反比例函数的值时,的取值范围是或.故选C.【点睛】本题考查了一次函数与反比例函数的交点问题,利用图象确定不等式的取值范围,准确画出图形,利用数形结合是解题的关键.4、D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径,则问题可求.【详解】解:∵62+82=102,∴此三角形为直角三角形,∵直角三角形外心在斜边中点上,∴外接圆半径为5,设该三角形内接圆半径为r,∴由面积法×6×8=×(6+8+10)r,解得r=2,三角形的内切圆半径与外接圆半径的比为2:5,故选D.【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.5、D【分析】根据各个选项中的函数解析式,可以判断出当x>0时,y随x的增大如何变化,从而可以解答本题.【详解】在y=2x+1中,当x>0时,y随x的增大而增大,故选项A不符合题意;在中,当x>0时,y随x的增大而增大,故选项B不符合题意;在中,当x>0时,y随x的增大而增大,故选项C不符合题意;在y=−x2−2x=−(x+1)2+1中,当x>0时,y随x的增大而减小,故选项D符合题意;故选:D.【点睛】本题考查一次函数的性质、反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,可以判断出当x>0时,y随x的增大如何变化.6、B【分析】先把样本中的仅使用A支付的概率,A,B两种支付方式都使用的概率分别算出,再来估计总体该项的概率逐一进行判断即可.【详解】解:∵样本中仅使用A支付的概率=,∴总体中仅使用A支付的概率为0.3.故①正确.∵样本中两种支付都使用的概率=0.4∴从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.4;故②错误.估计全校仅使用B支付的学生人数为:800=200(人)故③正确.根据中位数的定义可知,仅用A支付和仅用B支付的中位数应在0至500之间,故④错误.故选B.【点睛】本题考查了用样本来估计总体的统计思想,理解样本中各项所占百分比与总体中各项所占百分比相同是解题的关键.7、B【分析】先求出无理数的个数,再根据概率公式即可得出结论;【详解】∵共有4种结果,其中无理数有:,π共2种情况,∴任取一个数是无理数的概率;故选B.【点睛】本题主要考查了概率公式,无理数,掌握概率公式,无理数是解题的关键.8、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A:,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【点睛】此题考查算术平方根,依据,进行判断.9、C【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.10、C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.二、填空题(每小题3分,共24分)11、【分析】设第n秒时P的位置为Pn,P5可直接求出,根据点的运动规律找出规律,每4秒回x轴,P4n(4n,0),由2019=504×4+3,回到在P3的位置上,过P3作P3B⊥x轴于B,则OB=3,P3B=,P3(3,-),当t=2019时,OP2019=OP2016+OB,此时P2019点纵坐标与P3纵坐标相同,即可求.【详解】设n秒时P的位置为Pn,过P5作P5A⊥x轴于A,OP4=OP2+P2P4=4,P4(4,0),当t=5时,由扇形知P4P5=2,OP4=4,在Rt△P4P5A中,∠P5P4A=60º,则∠P4P5A=90º-∠P5P4A=60º=30º,P4A=P4P5=1,由勾股定理得PA=,OA=OP4+AP4=5,由点P在第一象限,P(5,),通过图形中每秒后P的位置发现,每4秒一循环,2019=504×4+3,回到相对在P3的位置上,过P3作P3B⊥x轴于B,则OB=3,P3B=,由P3在第四象限,则P3(3,-),当t=2019时,OP2019=OP2016+OB=4×504+3=2019,P2019点纵坐标与P3纵坐标相同,此时P2019坐标为(2019,-),秒时,点的坐标是(2019,-).故答案为:(5,),(2019,-).【点睛】本题考查规律中点P的坐标问题关键读懂题中的含义,利用点运动的速度,考查直线与弧线的时间,发现都用1秒,而每4秒就回到x轴上,由此发现规律便可解决问题.12、1<S<2【分析】将已知两点坐标代入二次函数解析式,得出c的值及a、b的关系式,代入S=a+b+c中消元,再根据对称轴的位置判断S的取值范围即可.【详解】解:将点(1,1)和(﹣1,1)分别代入抛物线解析式,得c=1,a=b﹣1,∴S=a+b+c=2b,由题设知,对称轴x=且,∴2b>1.又由b=a+1及a<1可知2b=2a+2<2.∴1<S<2.故答案为:1<S<2.【点睛】本题考查了二次函数图象上点的坐标特点,运用了消元法的思想,对称轴的性质,需要灵活运用这些性质解题.13、等腰【分析】根据绝对值和平方的非负性求出sinA和tanB的值,再根据锐角三角函数的特殊值求出∠A和∠B的角度,即可得出答案.【详解】∵∴,∴∠A=30°,∠B=30°∴△ABC是等腰三角形故答案为等腰.【点睛】本题考查的是特殊三角函数值,比较简单,需要牢记特殊三角函数值.14、30°【解析】试题解析:∵关于x的方程有两个相等的实数根,∴解得:∴锐角α的度数为30°;故答案为30°.15、(1,﹣1)【分析】直接利用关于原点对称点的性质得出答案.【详解】解:点A(﹣1,1)关于原点对称的点的坐标是:(1,﹣1).故答案为:(1,﹣1).【点睛】此题主要考查了关于原点对称的点的坐标,正确记忆横纵坐标的符号关系是解题关键.16、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.17、25【解析】首先求出∠HDB的度数,再利用直角三角形斜边中线定理可得OH=OD,由此可得∠OHD=∠ODH即可解决问题.【详解】∵四边形ABCD是菱形,∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,∴∠ABO=90°−∠BAO=65°,∵DH⊥AB,∴∠DHB=90°,∴∠BDH=90°−ABO=25°,在Rt△DHB中,∵OD=OB,∴OH=OD=OB,∴∠DHO=∠HDB=25°,故答案为:25.【点睛】本题考查了菱形的性质,直角三角形斜边中线定理,熟练掌握性质定理是解题的关键.18、AC⊥BD.【分析】根据矩形的性质、三角形的中位线定理和平行线的性质即可得出结论.【详解】解:如图,设四边形EFGH是符合题意的中点四边形,则四边形EFGH是矩形,∴∠FEH=90°,∵点E、F分别是AD、AB的中点,∴EF是△ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD的中点,∴EH是△ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为AC⊥BD.【点睛】本题考查了矩形的性质、三角形的中位线定理和平行线的性质,熟练掌握三角形中位线定理是解此题的关键.三、解答题(共66分)19、(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.20、(1)a=1或﹣1;(2)a=﹣10,方程的另一个根为1.【分析】(1)由题意可得方程的判别式△=0,由此可得关于a的方程,解方程即得结果;(2)把x=2代入原方程即可求出a,然后再解方程即可求出方程的另一个根.【详解】解:(1)∵方程x2+ax+16=0有两个相等的实数根,∴a2-4×1×16=0,解得a=1或﹣1;(2)∵方程x2+ax+16=0有一个根是2,∴22+2a+16=0,解得a=﹣10;此时方程为x2﹣10x+16=0,解得x1=2,x2=1;∴a=﹣10,方程的另一个根为1.【点睛】本题考查了一元二次方程的解、一元二次方程的解法以及根的判别式等知识,属于基础题目,熟练掌握上述知识是解题的关键.21、每辆车需降价2万元【分析】设每辆车需降价万元,根据每辆汽车每降5000元,公司平均每天可多售出2辆可用x表示出日销售量,根据每天要获利48万元,利用利润=日销售量×单车利润列方程可求出x的值,根据尽量减少库存即可得答案.【详解】设每辆车需降价万元,则日销售量为辆,依题意,得:,解得:,,∵要尽快减少库存,∴.答:每辆车需降价2万元.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语,得出等量关系是解题关键.22、(1)20+2x,;(2)降价为15元时,盈利最多为1250元【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价-进价,列式即可;(2)把函数关系式化为顶点式,根据二次函数的性质即可得到结论.【详解】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,

故答案为:(20+2x),(40-x);(2)设每件童装降价x元,盈利y元,

根据题意得,y=(20+2x)(40-x)=-2x2+60x+800=-2(x-15)2+1250,

答:每件童装降价15元时,每天可获得最多盈利,最多盈利是1250元.【点睛】本题主要考查一元二次方程和二次函数的应用,根据题意列出函数表达式并熟练运用性质是解决问题的关键.23、(1);(1)图见解析,顶点坐标是;(3)或.【分析】(1)利用待定系数法求解即可;(1)先化为,即可得出顶点坐标,并作出图像;(3)根据图象即可得出,或时,y≥1.【详解】(1)函数的图象经过点,∴9+3-1=1,解得,∴函数的解析式为;(1)如图,顶点坐标是;(3)当时,解得:根据图象知,当或时,,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论