版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.方程的根是()A. B. C. D.2.如果将抛物线平移,使平移后的抛物线与抛物线重合,那么它平移的过程可以是()A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位.3.下列各式与是同类二次根式的是()A. B. C. D.4.为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从市文旅局获悉,“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为()A.1.7118×10 B.0.17118×10C.1.7118×10 D.171.18×105.反比例函数,下列说法不正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大6.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤7.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A. B. C. D.8.下列方程中,为一元二次方程的是()A.2x+1=0; B.3x2-x=10; C.; D..9.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为()A.30° B.40° C.50° D.60°10.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或911.如图,是抛物线的图象,根据图象信息分析下列结论:①;②;③;④.其中正确的结论是()A.①②③ B.①②④ C.②③④ D.①②③④12.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有()箱.A.2 B.3 C.4 D.5二、填空题(每题4分,共24分)13.如图,将沿方向平移得到,与重叠部分(即图中阴影部分)的面积是面积的,若,则平移的距离是__________.,14.一元二次方程的解是.15.如图,tan∠1=____________.16.如图,AC为圆O的弦,点B在弧AC上,若∠CBO=58°,∠CAO=20°,则∠AOB的度数为___________17.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=-(k>0)图象上的两个点,则y1与y2的大小关系为_____.18.如果,那么的值为______.三、解答题(共78分)19.(8分)如图,在△ABC中,∠A为钝角,AB=25,AC=39,,求tanC和BC的长.
20.(8分)如图,在平面直角坐标系中,抛物线经过点,交轴于点.(1)求抛物线的解析式.(2)点是线段上一动点,过点作垂直于轴于点,交抛物线于点,求线段的长度最大值.21.(8分)如图①,四边形是边长为2的正方形,,四边形是边长为的正方形,点分别在边上,此时,成立.(1)当正方形绕点逆时针旋转,如图②,成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形绕点逆时针旋转(任意角)时,仍成立吗?直接回答;(3)连接,当正方形绕点逆时针旋转时,是否存在∥,若存在,请求出的值;若不存在,请说明理由.22.(10分)如图,已知点A(a,3)是一次函数y1=x+1与反比例函数y2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围;(3)求点A与两坐标轴围成的矩形OBAC的面积.23.(10分)计算:2cos60°+4sin60°•tan30°﹣cos45°24.(10分)在一空旷场地上设计一落地为矩形的小屋,,拴住小狗的长的绳子一端固定在点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为.(1)如图1,若,则__________.(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边形的小屋,其他条件不变,则在的变化过程中,当取得最小值时,求边的长及的最小值.25.(12分)如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;(2)求折成的无盖盒子的侧面积的最大值.26.有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据因式分解法,可得答案.【详解】解:解得:,,故选:.【点睛】本题考查了解一元二次方程,因式分解是解题关键.注意此题中方程两边不能同时除以,因为可能为1.2、D【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【详解】解:抛物线的顶点坐标为:(0,),∵,则顶点坐标为:(4,),∴顶点由(0,)平移到(4,),需要向右平移4个单位,再向下平移5个单位,故选择:D.【点睛】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.3、A【分析】根据同类二次根式的概念即可求出答案.【详解】解:(A)原式=2,故A与是同类二次根式;(B)原式=2,故B与不是同类二次根式;(C)原式=3,故C与不是同类二次根式;(D)原式=5,故D与不是同类二次根式;故选:A.【点睛】此题主要考查了同类二次根式的定义,正确化简二次根式是解题关键.4、C【分析】用科学记数法表示较大数的形式是,其中,n为正整数,只要确定a,n即可.【详解】将171.18万用科学记数法表示为:1.7118×1.故选:C.【点睛】本题主要考查科学记数法,掌握科学记数法是解题的关键.5、D【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【点睛】此题考查反比例函数的性质,熟记性质并运用解题是关键.6、C【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.故所有正确结论的序号是①②③⑤.故选C7、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,
∴两个骰子的点数相同的概率为:故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比8、B【解析】试题解析:A.是一元一次方程,故A错误;
B.是一元二次方程,故B正确;
C.不是整式方程,故C错误;
D.不是一元二次方程,故D错误;
故选B.9、B【解析】∵△ADE是由△ABC绕点A旋转100°得到的,∴∠BAD=100°,AD=AB,∵点D在BC的延长线上,∴∠B=∠ADB=.故选B.点睛:本题主要考察了旋转的性质和等腰三角形的性质,解题中只要抓住旋转角∠BAD=100°,对应边AB=AD及点D在BC的延长线上这些条件,就可利用等腰三角形中:两底角相等求得∠B的度数了.10、D【解析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.11、D【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x、y轴的交点,通过推算进行判断.【详解】①根据抛物线对称轴可得,,正确;②当,,根据二次函数开口向下和得,和,所以,正确;③二次函数与x轴有两个交点,故,正确;④由题意得,当和时,y的值相等,当,,所以当,,正确;故答案为:D.【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键.12、B【分析】先计算出这些水果的总质量,再根据剩下的足球与篮球的数量关系,通过推理判断出拿走的篮球的个数,从而计算出剩余篮球的个数.【详解】解:∵8+9+16+20+22+27=102(个)根据题意,在剩下的五箱球中,足球的数量是篮球的2倍,∴剩下的五箱球中,篮球和足球的总个数是3的倍数,由于102是3的倍数,所以拿走的篮球个数也是3的倍数,只有9和27符合要求,假设拿走的篮球的个数是9个,则(102-9)÷3=31,剩下的篮球是31个,由于剩下的五个数中,没有哪两个数的和是31个,故拿走的篮球的个数不是9个,假设拿走的篮球的个数是27个,则(102-27)÷3=25,剩下的篮球是25个,只有9+16=25,所以剩下2箱篮球,故这六箱球中,篮球有3箱,故答案为:B.【点睛】本题主要考查的是学生能否通过初步的分析、比较、推理得出正确的结论,培养学生有顺序、全面思考问题的意识.二、填空题(每题4分,共24分)13、【分析】与相交于点,因为平移,由此求出,从而求得【详解】解:由沿方向平移得到,【点睛】本题考查了平移的性质,以及相似三角形的性质.14、±1.【解析】试题分析:∵x1-4=0∴x=±1.考点:解一元二次方程-直接开平方法.15、【分析】由圆周角定理可知∠1=∠2,再根据锐角三角函数的定义即可得出结论.【详解】解:∵∠1与∠2是同弧所对的圆周角,故答案为【点睛】本题考查的是圆周角定理,熟知同弧所对的圆周角相等是解答此题的关键.16、76°【分析】如图,连接OC.根据∠AOB=2∠ACB,求出∠ACB即可解决问题.【详解】如图,连接OC.∵OA=OC=OB,∴∠A=∠OCA=20°,∠B=∠OCB=58°,∴∠ACB=∠OCB−∠OCA=58°−20°=38°,∴∠AOB=2∠ACB=76°,故答案为76°.【点睛】本题考查等腰三角形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17、y1<y1【分析】根据双曲线所在的象限,得出y随x的增大而增大,即可判断.【详解】解:∵k>0,∴﹣k<0,因此在每个象限内,y随x的增大而增大,∵﹣4<﹣1,∴y1<y1,故答案为:y1<y1.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数在各象限的增减性.18、【分析】利用因式分解法求出的值,再根据可得最终结果.【详解】解:原方程可化为:,解得:或,∵,∴.故答案为:.【点睛】本题考查的知识点是解一元二次方程以及锐角三角函数的定义,熟记正弦的取值范围是解此题的关键.三、解答题(共78分)19、tanC=;BC=1【分析】过点A作AD⊥BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;在Rt△ABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长.【详解】解:过点A作AD⊥BC于D,
在Rt△ABD中,AB=25,sinB=,
∴AD=AB·sinB=15,
在Rt△ACD中,由勾股定理得CD2=AC2-AD2,
∴CD2=392-152,∴CD=36,
∴tanC==.
在Rt△ABD中,AB=25,AD=15,
∴由勾股定理得BD=20,
∴BC=BD+CD=1.【点睛】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系.20、(1);(2)4.【分析】(1)根据A、B坐标可得抛物线两点式解析式,化为一般形式即可;(2)根据抛物线解析式可得C点坐标,利用待定系数法可得直线AC的解析式为y=-x+4,设点坐标为,则,用m表示出DF的长,配方为二次函数顶点式的形式,根据二次函数的性质求出DF的最大值即可.【详解】(1)∵拋物线经过点,∴∴拋物线的解析式为.(2)∵拋物线的解析式为,∴,设直线的解析式为y=kx+b,∴,∴,b=4,∴直线AC的解析式为设点坐标为,则∴=-(m-2)2+4,∴当m=2时,DF的最大值为4.【点睛】本题考查待定系数法求二次函数解析式及二次函数的最值,熟练掌握二次函数解析式的三种形式及二次函数的性质是解题关键.21、(1)成立,证明见解析;(2)结论仍成立;(3)存在,【分析】(1)先利用正方形的性质和旋转的性质证明≌,然后得出,再根据等量代换即可得出,则有;(2)先利用正方形的性质和旋转的性质证明≌,然后得出,再根据等量代换即可得出,则有;(3)通过分析得出时,在同一直线上,根据AO,AF求,从而有,最后利用即可求解.【详解】(1)结论,仍成立.如图1,延长交于交于点,∵四边形,ABCD都是正方形,∴.由旋转可得,,,∴≌,∴.,,∴,∴结论仍成立.(2)若正方形绕点逆时针旋转时,如图,结论仍然成立,理由如下:如图2,延长交于交于点,∵四边形,ABCD都是正方形,∴.由旋转可得,,,∴≌,∴.,,∴,∴结论仍成立.当旋转其他角度时同理可证,所以结论仍成立.(3)存在如图3,连接,与相交于,∵,当∥时,,又∵,∴在同一直线上.∵四边形ABCD,AEGF是正方形,∴.∵,∴.∵,,,∴,即当时,∥成立.【点睛】本题主要考查正方形的性质,全等三角形的判定及性质,解直角三角形,直角三角形两锐角互余,掌握正方形的性质,全等三角形的判定及性质,解直角三角形,直角三角形两锐角互余是解题的关键.22、(1)y2=;(2)x>2;(3)点A与两坐标轴围成的矩形OBAC的面积是1.【解析】(1)将点A的坐标代入一次函数的解析式,求得a值后代入反比例函数求得b的值后即可确定反比例函数的解析式;(2)y1>y2时y1的图象位于y2的图象的上方,据此求解.(3)根据反比例函数k值的几何意义即可求解.【详解】解:(1)将A(a,3)代入一次函数y1=x+1得a+1=3,解得a=2,∴A(2,3),将A(2,3)代入反比例函数得,解得k=1,∴(2)∵A(2,3),y1=x+1,∴在y轴的右侧,当y1>y2时,x的取值范围是x>2;(3)∵k=1,∴点A与两坐标轴围成的矩形OBAC的面积是1.【点睛】本题考查了反比例函数与一次函数的交点问题,能正确的确定点A的坐标是解答本题的关键,难度不大.23、3﹣.【分析】直接利用特殊角的三角函数值代入求出答案.【详解】2cos60°+4sin60°•tan30°﹣cos45°=2×+4××﹣=1+2﹣=3﹣.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24、(1)88π;(2)BC长为;S的最小值为.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;
(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10-x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,
∴S=×π•102+•π•62+•π•42=88π,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度六安住房租赁合同协议书
- 2024年度新能源发电项目投资与建设合同
- 假期《木偶奇遇记》个人读后感
- 2024年北京城市副中心建设项目合同
- 2024年度光伏发电项目特许权协议
- 2024年国际学校校长合同模板
- 2024年工程质量检测服务协议
- 喷水壶课件教学课件
- 2024年债务重组:房产转让与债务清零合同
- 2024乳制品行业牛奶输送泵安装合同
- 购并技巧与案例解析
- 当代西方国家议会制度
- structure-.---中文使用手册
- 小学三年级缩句、扩句复习及教案(课堂PPT)
- 平凡之路--朴树-歌词
- 斯派克直读光谱仪操作手册(共43页)
- 梯形练字格A4纸打印版
- 2014年SHE教育培训计划
- 二年级上册叶一舵心理健康教案
- 机场使用手册飞行区场地管理
- 低血糖处理流程
评论
0/150
提交评论