版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2023-2024学年广东省东莞市高二下学期期末教学质量检查数学试题一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。1.已知函数f(x)=sinxcosx,则A.f′(x)=sin2x−cos2x B.f′(x)=2.已知随机变量X服从正态分布N(2,σ2),且P(X<3)P(X<1)=4A.35 B.23 C.3103.两个相关变量x,y满足如下关系:x23456y25●465865根据表格已得经验回归方程为y=10.2x+5.2.若表格中有一数据模糊不清,则推算该数据是A.35.5 B.36 C.36.5 D.374.在区间(0,1)上,若f′(x)>1,则下列四个图中,能表示函数y=f(x)的图象的是(
)A. B. C. D.5.某中学推出了篮球、足球、排球、羽毛球、乒乓球共5门球类体育选修课供同学们选择,其中羽毛球火爆,只剩下一个名额,其余4门球类课程名额充足.现有某宿舍的四位同学报名选课,每人只选择其中的1门课程,四位同学选完后,恰好选择了3门不同球类课程,则不同的选课情况总共有(
)A.316种 B.360种 C.216种 D.288种6.袋中有5个白球,4个黑球,从中依次不放回取球,当取出三个相同颜色的球时停止取球,记X为取出球的总数,则X=4的概率为(
)A.514 B.57 C.5427.如图,“杨辉三角”是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,比欧洲发现早500年左右.现从杨辉三角第20行随机取一个数,该数大于2024的概率为
A.34 B.57 C.13208.已知实数x,y,z满足eylnx=yex且eA.x>y>z B.x>z>y C.y>z>x D.y>x>z二、多选题:本题共3小题,共18分。在每小题给出的选项中,有多项符合题目要求。9.变量x与y的成对数据的散点图如下图所示,由最小二乘法计算得到经验回归直线l1的方程为y=b1x+a1,相关系数为r1,决定系数为R12;经过残差分析确定第二个点B为离群点(对应残差过大),把点B对应的数据去掉后,用剩下的7组数据计算得到经验回归直线l2A.r1<r2 B.R1210.已知函数f(x)=ax3+bx2+cx+d(a≠0)在A.3a+2b+c=0 B.d=2a+b+1 C.b<−3a D.b>−3a11.设A,B是一个随机试验中的两个事件,且P(A)=712,P(B)=12,P(A.P(AB)=14 B.P(AB)=5三、填空题:本题共3小题,每小题5分,共15分。12.若ax2+1x5的展开式中x413.若甲筐中有5个苹果,3个梨子,2个橙子,乙筐中有x个苹果、1个梨子、2个橙子,现从甲筐中随机取出一个水果放入乙筐,再从乙筐中随机取出一个水果,记“从乙筐中取出的水果是苹果”为事件A,若P(A)≥12,则整数x的最小值为_________.14.若直线y=kx+m是曲线y=ex−2的切线,也是曲线y=ex−1四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。15.(本小题13分)已知函数f(x)=sinxax的图象在点(π,0)(1)求实数a的值;(2)若x>0,求证:f(x)<1.16.(本小题15分)某社区以网上调查问卷形式对辖区内部分居民做了体育锻炼的宣传和调查.调查数据如下:共100份有效问卷,50名男性中有5名不经常体育锻炼,50名女性中有10名不经常体育锻炼.(1)根据所给数据,完成下面的2×2列联表;根据小概率值α=0.05的独立性检验,分析性别因素是否会影响经常体育锻炼?性别经常体育锻炼与否合计经常体育锻炼不经常体育锻炼男女合计(2)从不经常体育锻炼的15份调查问卷中得到不经常锻炼的原因:有3份身体原因;有2份不想锻炼;有4份没有时间;有6份没有运动伙伴.求从这15份问卷中随机选出2份,在已知其中一份是“没有时间”的条件下,另一份是“没有运动伙伴”的概率.附:①χ2=②临界值表α0.10.050.010.0050.001x2.7063.8416.6357.87910.82817.(本小题15分)某企业生产一种热销产品,产品日产量为x(x≥1)吨,日销售额为y万元(每日生产的产品当日可销售完毕),且产品价格随着产量变化而有所变化.经过一段时间的产销,随机收集了某5天的日产量xi(i=1,2,…,5)(单位:吨)和日销售额yi(i=1,2,…,5)(单位:万元i=1i=1i=1i=1i=1i=1i=1i=115734.810161.21.63915.9其中,ui=lnxi(i=1,2,…,5),x,y,u分别为数据xi,yi,u(1)请从样本相关系数的角度,判断y=bx+a与y=(2)根据(1)的结果解决下列问题:(ⅰ)建立y关于x的经验回归方程(斜率的结果四舍五入保留整数);(ⅱ)如果日产量x(单位:吨)与日生产总成本c(x)(单位:万元)满足关系c(x)=12x+3,根据(ⅰ)中建立的经验回归方程估计日产量x附:①相关系数r=i=1②经验回归方程y=bx+a的斜率和截距的最小二乘法公式分别为:③参考数据:1612≈40,1.6×161.2≈1618.(本小题17分)已知函数f(x)=lnx(1)若g(x)=f(x)−a(x−1)x+1,讨论函数(2)若0<x<1,求证:f(x)x−1>19.(本小题17分)设集合A={1,2,3,…,n}(n∈N ∗),B⊆A,且B≠⌀,记集合B中的最小元素和最大元素分别为随机变量X(1)若X≥3的概率为731,求n(2)若n=20,求X=8且Y=18的概率;(3)记随机变量Z=X+Y2,证明:E(Z)=n+1参考答案1.B
2.C
3.B
4.D
5.D
6.A
7.D
8.A
9.AC
10.ABC
11.ACD
12.2
13.3
14.−2ln15.解:(1)求导得f′(x)=xcosx−sinxax2,则f′(π)=−1aπ,
由切线方程是x+πy−π=0得切线斜率为−1π,
所以−1aπ=−1π,解得a=1;
(2)记g(x)=sinx−x(x>0),
求导得g′(x)=cosx−1≤0恒成立,
16.解:(1)由题意得2×2列联表如下:性别经常体育锻炼与否合计经常体育锻炼不经常体育锻炼男45550女401050合计8515100零假设为H0:性别与经常体育锻炼无关,
根据列联表中的数据,经计算得到χ2=100×(45×10−5×40)250×50×85×15=10051≈1.9608<3.841=x0.05,
根据小概率值α=0.05的独立性检验,没有充分证据推断H0不成立,
因此可以认为H0成立,即不能认为性别因素会影响经常体育锻炼.
(2)记“选出2份问卷其中一份是‘没有时间,”为事件A,
则n(A)=C41C111+C42=44+6=50,
记“选出17.解:(1)模型y=bx+a的线性相关系数:
r1=i=15(xi−x)(yi−y)i=15(xi−x)2i=15(yi−y)2=3910×161.2≈3940=15.616=0.975,
模型y=dlnx+c的线性相关系数:
r2=i=15(ui−u)(yi−y)i=15ui−u2∑518.解:(1)由题得g(x)=lnx−a+2ax+1,x>0,
求导得g′(x)=1x−2a(x+1)2=(x+1)2−2axx(x+1)2=x2+2(1−a)x+1x(x+1)2,
①当Δ=4(1−a)2−4≤0,即0≤a≤2时,g′(x)≥0恒成立,
所以g(x)在(0,+∞)上单调递增;
②当Δ=4(1−a)2−4>0,即a<0或a>2时,
(a)当a<0时,g′(x)=(x+1)2−2axx(x+1)2>0恒成立,所以g(x)在(0,+∞)上单调递增;
(b)当a>2时,由g′(x)=x2+2(1−a)x+1x(x+1)2=0得x1=a−1−a2−2a,x2=a−1+a2−2a,
经判断得0<x1<x2,当g′(x)>0时,0<x<x1或x>x2;当g′(x)<0时,x1<x<x2,
所以g(x)在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减;
综上所述,a≤2时,g(x)在(0,+∞)上单调递增;
a>2时,g(x)在(0,19.解:(1)非空集合B的个数为Cn1+Cn2+Cn3+⋯+Cnn=2n−1,
所以P(X≥3)=1−P(X=1)−P(X=2)=1−2n−12n−1−2n−22n−1=2n−2−12n−1,
由题得2n−2−12n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024农村分家协议书范本
- 实验室租赁合同格式样本
- 居民个人租房合同范本
- 2024年沙厂水泥出售合同范本
- 2024年奶制品原料采购合同范本
- 风电钢格板采购合同范本
- 2024年国家博物馆合作协议书模板
- 2024年个人茶地出租合同范本
- 婚姻财产约定范例
- 国际贸易居间合同协议书范本2024年
- 实验室人员比对试验结果小结与分析
- 七年级上册历史时间轴
- 个人寿险业务人员基本管理办法(试行2012A版)
- 口风琴结题报告-复件(1)
- 赶工措施费用计算(精编版)
- 《千字文》全文(带拼音)
- 金属断裂机理
- 病理室工作流程及操作规范
- 预制装配式结构及预制构件工程吊装施工工艺
- 中国联通swot分析
- 《有创动脉血压监测》PPT课件
评论
0/150
提交评论