版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安电子科技大附中2025届九上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm2.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点3.老师出示了如图所示的小黑板上的题后,小华说:过点;小明说:;小颖说:轴被抛物线截得的线段长为2,三人的说法中,正确的有()A.1个 B.2个 C.3个 D.0个4.我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2106.如图,在△ABC中,点D、E分别在边BA、CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A. B. C. D.7.在中,,,,则直角边的长是()A. B. C. D.8.已知两圆半径分别为6.5cm和3cm,圆心距为3.5cm,则两圆的位置关系是()A.相交 B.外切 C.内切 D.内含9.如图是由4个大小相同的小正方体摆成的几何体,它的左视图是()A. B. C. D.10.下列几何体的三视图相同的是(
)A.圆柱
B.球
C.圆锥
D.长方体二、填空题(每小题3分,共24分)11.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为_____m.12.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程()与乙车行驶时间()之间的函数图象如图所示,则下列说法:①②甲的速度是60km/h;③乙出发80min追上甲;④乙车在货站装好货准备离开时,甲车距B地150km;⑤当甲乙两车相距30km时,甲的行驶时间为1h、3h、h;其中正确的是__________.13.如图,AB是⊙O的直径,C、D为⊙O上的点,P为圆外一点,PC、PD均与圆相切,设∠A+∠B=130°,∠CPD=β,则β=_____.14.如图,的顶点都在方格纸的格点上,则_______.15.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是____.16.已知线段,点是它的黄金分割点,,设以为边的正方形的面积为,以为邻边的矩形的面积为,则与的关系是__________.17.计算:﹣tan60°=_____.18.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.三、解答题(共66分)19.(10分)如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.(1)求抛物线的表达式;(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).①当为何值时,得面积最小?②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.20.(6分)如图,矩形ABCD中,AB=3,BC=5,CD上一点E,连接AE,将△ADE绕点A旋转90°得△AFG,连接EG、DF.(1)画出图形;(2)若EG、DF交于BC边上同一点H,且△GFH是等腰三角形,试计算CE长.21.(6分)如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=1.(1)求BE的长.(2)若BC=15,求的长.22.(8分)如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.23.(8分)某大型商场出售一种时令鞋,每双进价100元,售价300元,则每天能售出400双.经市场调查发现:每降价10元,则每天可多售出50双.设每双降价x元,每天总获利y元.(1)如果降价40元,每天总获利多少元呢?(2)每双售价为多少元时,每天的总获利最大?最大获利是多少?24.(8分)先化简:,再求代数式的值,其中是方程的一个根.25.(10分)已知二次函数y=x2﹣4x+1.(1)在所给的平面直角坐标系中画出它的图象;(2)若三点A(x1,y1),B(x2,y2),C(x1.y1)且2<x1<x2<x1,则y1,y2,y1的大小关系为.(1)把所画的图象如何平移,可以得到函数y=x2的图象?请写出一种平移方案.26.(10分)关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件.小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。方程两根的情况对应的二次函数的大致图象满足的条件方程有两个不相等的负实根①_______方程有两个不相等的正实根②③____________(1)请将表格中①②③补充完整;(2)已知关于的方程,若方程的两根都是正数,求的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【解析】∴选D2、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.3、B【分析】根据图上给出的条件是与x轴交于(1,0),叫我们加个条件使对称轴是,意思就是抛物线的对称轴是是题目的已知条件,这样可以求出的值,然后即可判断题目给出三人的判断是否正确.【详解】∵抛物线过(1,0),对称轴是,∴解得,
∴抛物线的解析式为,
当时,,所以小华正确;∵,所以小明正确;
抛物线被轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y轴或,此时答案不唯一,所以小颖错误.综上,小华、小明正确,
故选:B.【点睛】本题考查了抛物线与轴的交点以及待定系数法求二次函数解析式,利用待定系数法求出抛物线的解析式是解题的关键.4、A【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)
共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,
所以两人恰好选择同一场馆的概率,故选:A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.5、B【详解】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.6、D【分析】只要证明,即可解决问题.【详解】解:A.,可得AE:AC=1:1,与已知不成比例,故不能判定B.,可得AC:AE=1:1,与已知不成比例,故不能判定;C选项与已知的,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;D.,可得DE//BC,故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、B【分析】根据余弦的定义求解.【详解】解:∵在Rt△ABC中,∠C=90°,cosB=,
∴BC=10cos40°.
故选:B.【点睛】本题考查解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.8、C【解析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【详解】∵两圆的半径分别为6.5cm和3cm,圆心距为3.5cm,且6.5﹣3=3.5,∴两圆的位置关系是内切.故选:C.【点睛】考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.9、C【分析】根据左视图即从物体的左面观察得得到的视图,进而得出答案.【详解】如图所示,该几何体的左视图是:.故选C.【点睛】此题主要考查了几何体的三视图;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.10、B【解析】试题分析:选项A、圆柱的三视图,如图所示,不合题意;选项B、球的三视图,如图所示,符合题意;选项C、圆锥的三视图,如图所示,不合题意;选项D、长方体的三视图,如图所示,不合题意;.故答案选B.考点:简单几何体的三视图.二、填空题(每小题3分,共24分)11、1.【解析】试题解析:设这栋建筑物的高度为由题意得解得:即这栋建筑物的高度为故答案为1.12、②③【分析】根据一次函数的性质和该函数的图象对各项进行求解即可.【详解】∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),即①不成立;∵40分钟=小时,∴甲车的速度为460÷(7+)=60(千米/时),即②成立;设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=1.乙车发车时,甲车行驶的路程为60×=40(千米),乙车追上甲车的时间为40÷(1﹣60)=(小时),小时=80分钟,即③成立;乙车刚到达货站时,甲车行驶的时间为(4+)小时,此时甲车离B地的距离为460﹣60×(4+)=180(千米),即④不成立.设当甲乙两车相距30km时,甲的行驶时间为x小时,由题意可得1)乙车未出发时,即解得∵∴是方程的解2)乙车出发时间为解得解得3)乙车出发时间为解得∵所以不成立4)乙车出发时间为解得故当甲乙两车相距30km时,甲的行驶时间为h、1h、3h、h,故⑤不成立故答案为:②③.【点睛】本题考查了两车的路程问题,掌握一次函数的性质是解题的关键.13、100°【分析】连结OC,OD,则∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根据OB=OC,OD=OA,可得∠BOC=180°−2∠B,∠AOD=180°−2∠A,则可得出与β的关系式.进而可求出β的度数.【详解】连结OC,OD,∵PC、PD均与圆相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案为:100°.【点睛】本题利用了切线的性质,圆周角定理,四边形的内角和为360度求解,解题的关键是熟练掌握切线的性质.14、【分析】如下图,先构造出直角三角形,然后根据sinA的定义求解即可.【详解】如下图,过点C作AB的垂线,交AB延长线于点D设网格中每一小格的长度为1则CD=1,AD=3∴在Rt△ACD中,AC=∴sinA=故答案为:.【点睛】本题考查锐角三角函数的求解,解题关键是构造出直角三角形ACD.15、【解析】本题应分别求出正方形的总面积和阴影部分的面积,用阴影部分的面积除以总面积即可得出概率.【详解】解:小虫落到阴影部分的概率=,故答案为:.【点睛】本题考查的是概率的公式,用到的知识点为:概率=相应的面积与总面积之比.16、【分析】根据黄金分割比得出AP,PB的长度,计算出与即可比较大小.【详解】解:∵点是AB的黄金分割点,,∴,设AB=2,则,∴∴故答案为:.【点睛】本题考查了黄金分割比的应用,熟知黄金分割比是解题的关键.17、2.【分析】先运用二次根式的性质和特殊角的三角函数进行化简,然后再进行计算即可.【详解】解:﹣tan60°=3﹣=2.故答案为:2.【点睛】本题考查了基本运算,解答的关键是灵活运用二次根式的性质对二次根式进行化简、牢记特殊角的三角函数值.18、(2,10)或(﹣2,0)【解析】∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).三、解答题(共66分)19、(1);(2)①;②【分析】(1)根据点B的坐标可得出点A,C的坐标,代入抛物线解析式即可求出b,c的值,求得抛物线的解析式;(2)①过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,将三角形的面积用含t的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A(0,3),C(4,0),∵抛物线经过A、B两点,∴,解得,,∴抛物线的表达式为:.(2)①∵四边形ABCD是矩形,∴∠B=90O,∴AC2=AB2+BC2=5;由,可得,∴D(2,3).过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,∵∠FAQ=∠BAC,∠QFA=∠CBA,∴△QFA∽△CBA.∴,∴.同理:△CGP∽△CBA,∴∴,∴,当时,△DPQ的面积最小.最小值为.②由图像可知点D的坐标为(2,3),AC=5,直线AC的解析式为:.三角形直角的位置不确定,需分情况讨论:当时,根据勾股定理可得出:,整理,解方程即可得解;当时,可知点G运动到点B的位置,点P运动到C的位置,所需时间为t=3;当时,同理用勾股定理得出:;整理求解可得t的值.由此可得出t的值为:,,,,.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.20、(1)见解析;(2)CE=3-【分析】(1)根据题意作图即可;(2)根据旋转的性质得到DE=FG,△ADF、△BHF是等腰直角三角形,故求出FH=,再根据等腰三角形的性质得到GF=FH==DE,故可求出CE的长.【详解】解:(1)如图所示:(2)由旋转得,AD=AF=5,DE=GF∵∠BAD=90°∴△ADF为等腰直角三角形,∴A、B、F在同一直线上∴BF=2=BH∴△BHF为等腰直角三角形,∴HF==,∵△GFH是等腰三角形且∠GFH=90°+45°=135°∴GF=FH==DE∵CD=AB=3∴CE=CD-DE=3-.【点睛】此题主要考查矩形及旋转的性质,解题的关键是熟知等腰三角形的判定与性质.21、(1)1﹣15;(2)15π【分析】(1)连接OE,过O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的长,进而求得EB的长.(2)连接OD,则在直角三角形ODQ中,可求得∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,则得出的长度.【详解】解:(1)连接OE,过O作OF⊥BM于F,则四边形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)连接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π•60=15π.【点睛】本题考查了直角三角形的性质,弧长的计算、矩形的性质以及垂径定理,是基础知识要熟练掌握.22、(1)(8,0),;(2)(6,1);(3)①,②的长为或.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,即可得到OE;(2)如图,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由和,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=,根据Q3(−4,6),Q2(6,1),可得t=4时,s=,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,根据,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,根据tan∠HPQ=tan∠CDN=,列方程为2t−2=(7−t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【详解】解:(1)令,则,∴,∴为.∵为,在中,.又∵为中点,∴.(2)如图,作于点,则,∴,∴,∴,∴.∵,∴,由勾股定理得,∴,∴.∵,∴,∴为.(3)①∵动点同时作匀速直线运动,∴关于成一次函数关系,设,将和代入得,解得,∴.②(ⅰ)当时,(如图),,作轴于点,则.∵,又∵,∴,∴,∴,∴.(ⅱ)当时(如图),过点作于点,过点作于点,由得.∵,∴,∴,∴.∵,∴,∴,∴.(ⅲ)由图形可知不可能与平行.综上所述,当与的一边平行时,的长为或.【点睛】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.23、(1)如果降价40元,每天总获利96000元;(2)每双售价为240元时,每天的总获利最大,最大获利是98000元.【分析】(1)根据题意即可列式求解;(2)根据题意,得y=(400+5x)(300-x-100),根据二次函数的图像与性质即可求解.【详解】(1)根据题意知:每降价1元,则每天可多售出5双,∴(400+5×40)×(300-40-100)=600×160=96000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业泳池租赁服务合同版
- 2024年修订版住宅租赁中介合同书样本版
- 2024年全面房屋出租协议范本版B版
- 2024口腔诊所聘用劳动合同
- 2024年哺乳期夫妻双方离婚协议模板一
- 2024年企业固定期限职工劳动协议样本版
- 二零二四年股权转让合同协议书(转让方)3篇
- 暨南大学《中国侨务概论》2021-2022学年第一学期期末试卷
- 2024企业安全生产管理合同具体条款和条件
- 济宁学院《运动生理学Ⅱ》2021-2022学年第一学期期末试卷
- 2022年婚姻法与继承法案例分析题
- 物流配送路线优化毕业论文
- 医院周转宿舍建设项目可行性研究报告
- 电力工程专业设计工日定额
- 《身体的结构》我们的身体PPT课件3
- 试论“PMC”模式下业主方的合同管理方式
- 某某名师工作室青年教师培养方案
- 服务和供应品的采购管理程序
- YD∕T 5060-2019 通信设备安装抗震设计图集
- (完整版)《唐雎不辱使命》练习题和答案
- 脾破裂的超声诊断ppt课件
评论
0/150
提交评论