国际航空运输协会:2024航空业净零碳转型路径比较报告(英文版)_第1页
国际航空运输协会:2024航空业净零碳转型路径比较报告(英文版)_第2页
国际航空运输协会:2024航空业净零碳转型路径比较报告(英文版)_第3页
国际航空运输协会:2024航空业净零碳转型路径比较报告(英文版)_第4页
国际航空运输协会:2024航空业净零碳转型路径比较报告(英文版)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1

ExecutiveSummary

Transitioningtowardsnet-zerocarbondioxide(CO2)emissionsby2050isthegreatestchallengefortheairtransportindustry.TheaviationindustrytookthemomentousdecisiontoreachnetzeroCO2emissionsin2021,followedbyICAOmemberstatesin2022.Toachievethisambition,abasketofmeasuresthatcoversaviationenergytransition,aircrafttechnologybreakthrough,operationalimprovements,market-basedmeasures,andpolicysupportisrequired.Giventhesignificantuncertaintiesassociatedwiththisjourney,therewillnotbeasingleuniversalpathwayforthesectortoreachnetzeroby2050.Hence,variousorganizationshavedevelopednet-zeroCO2pathwaysforairtransport,includingtheInternationalAirTransportAssociation(IATA),theInternationalEnergyAgency(IEA),theInternationalCivilAviationOrganization(ICAO),theAirTransportActionGroup(ATAG),theInternationalCouncilonCleanTransportation(ICCT),MissionPossiblePartnership(MPP),DESTINATION2050,andtheU.S.FederalAviationAdministration(FAA).Meanwhile,numerousacademicstudiesonaviationnet-zerotransitionhavealsobeenpublishedinleadingscientificjournals.

Thisreportprovidesthefirstcomprehensivereviewoffourteenleadingnet-zerotransitionroadmapsfortheaviationsector.Bybreakingdownthemassiveamountofinformationdiscussedinthoseroadmapsintovariousaspectsforcomparison,thereportaimstohelpairlinesandstakeholdersbetterunderstandtheircriticaldifferencesandsimilarities.Specifically,thereportcomparestheselectedroadmapsintermsoftheirscope,keyinputassumptions,modeledaviationenergydemand,respectiveCO2emissions,andtheemissionsreductionpotentialbydifferentmitigationlevers.

Somekeyfindingsfromthisanalysisinclude:

1)Possiblepathwaystonet-zeroemissionsby2050differsignificantlyacrosstheroadmaps,dependingonthemainvisionaroadmapaimstoconveyonhowaviationdecarbonizationtechnologiesandsolutionsmayevolve.Giventhedifferentpurposesoftheroadmaps,oneroadmapmayputgreaterimportanceoncertainmitigationleversthanothers.

2)AllroadmapsassumethatSAFwillberesponsibleforthehighestamountofCO2reductionsby2050,contributingto24%-70%(withamedianvalueof53%)oftheCO2emissionsreductionscompared

tothecorrespondingbaselineemissionslevels.However,thiswiderangeofpossiblecontributionsfromSAFalsosuggestsuncertaintyinitsglobalsupply,whichdependsonfeedstockavailability,productioncosts,aswellassupportiveactionfromgovernmentsandfinanciers.

3)Technologyandoperationefficiencyimprovementareexpectedtohavearelativelyconsistentroleinthenet-zerotransitionprocess,togethercontributingtoabout30%oftheemissionsreductionin2050.

4)Theemissionssavingsbyhydrogen-andbattery-poweredaircraftarealsohighlyuncertainacrosstheroadmaps,dependingonwhetherastrongpro-hydrogenpolicyisadoptedaswellasarapiddeclineofrenewableenergyprices,whichenablesthefastuptakeoftheelectricity-basedtechnologies.

5)ThebaselineemissionsmodeledintheroadmapshaveadirectimpactontheamountofCO2emissionsthatneedtobeabatedby2050.Thus,apartfromthedemandgrowthratesusedinagivenroadmap’sbaseline,itisalsoimportanttounderstandwhatisandisnotincludedinthebaseline(e.g.,energyefficiencyimprovementinthepipelineversusafrozentechnologyin2019).

6)Thedemandimpactofnet-zerotransitiononaviationemissionsismodeledonlyinahandfulofroadmaps,wherealimitedemissionsreductioncontributionbylessthan10%isexpected.However,astrongdemandmanagementpolicywoulddoublethisimpactaccordingtotheIEANetZero2050roadmap.

7)Toachievenetzeroin2050,almostalltheglobalroadmapssuggestthattheaviationsectorwillneedhelpfrommarket-basedmeasuresandcarbonremovalstobridgethegap(rangingfrom

95MtCO2to370MtCO2)betweentheirresidualemissionsandnetzeroemissionsin2050.Evenifcarbonremovaltechnologiesareconsideredan‘out-of-sector’mitigationmeasure,itisstillcriticaltodevelopthesetechnologiesastheywillplayakeyroleinsupplyingCO2asthefeedstockforproducingpower-to-liquid(PtL)fuels.

2

1.Background

Owingtoitsalmostexclusivedependenceonpetroleum-basedjetfuelastheenergysourcetoday,theaviationsectorfacesagreatchallengetotransitiontowardsnet-zerocarbondioxide(CO2)emissionsby2050.However,theairlineindustryiscommittedtothisambitiousgoalfollowingtheircollectiveannouncementatthe77thInternationalAirTransportAssociation(IATA)AnnualGeneralMeetingin2021.MemberStatesoftheInternationalCivilAviationOrganization(ICAO)alsoagreedtoalong-

termaspirationalgoal(LTAG)ofnet-zeroCO2emissionsby2050in2022.ReachingthisambitioustargetwillrequirerapidCO2emissionsreductionintheaviationsectorwhilethedemandisexpectedtocontinuetogrow,particularlystronglyinemergingeconomies.Underthissetting,numerousorganizationsandresearchershavedevelopedtheirnet-zeroroadmapsfortheaviationsectorwithdifferentpossiblepathways,plans,andtransitionoptions.

Table1:Listofnet-zeroroadmapsandscenariosreviewedinthisstudy.

ID

ScenarioName

Organization

PublishedYear

1

Net-ZeroRoadmapS2

InternationalAirTransportAssociation(IATA)

2023

2

Net-Zero2050Roadmap(2023update)

InternationalEnergyAgency(IEA)

2023

3

Long-TermAspirationalGoal(LTAG)

IntegratedS2:Increased/furtherambitionscenario,mediumtrafficgrowth

InternationalCivilAviationOrganization(ICAO)

2022

4

Long-TermAspirationalGoal(LTAG)

IntegratedS3:Aggressive/speculativescenario,mediumtrafficgrowth

InternationalCivilAviationOrganization(ICAO)

2022

5

Vision2050BreakthroughScenario

InternationalCouncilonCleanTransportation(ICCT)

2022

6

Prudent(PRU)Scenario

MissionPossiblePartnership(MPP)

2022

7

OptimisticRenewableElectricity(ORE)Scenario

MissionPossiblePartnership(MPP)

2022

8

Biofuel+PtLscenario,middledemandscenario

Drayetal.(2022)publishedinNatureClimateChange

2022

9

Biofuel+Hydrogenscenario,middledemandscenario

Drayetal.(2022)publishedinNatureClimateChange

2022

10

Waypoint2050S1:pushingtechnologyandoperations

AirTransportActionGroup(ATAG)

2021

11

Waypoint2050S2:aggressivesustainablefueldeployment

AirTransportActionGroup(ATAG)

2021

12

Waypoint2050S3:aspirationalandaggressivetechnologyperspective

AirTransportActionGroup(ATAG)

2021

13

DESTINATION2050netzeroscenarioforEuropeanaviation

RoyalNetherlandsAerospaceCentre(NLR)andSEOAmsterdamEconomics(SEO)

2021

14

TheUSAviationClimateActionPlanscenario

TheUnitedStatesFederalAviationAdministration(FAA)

2021

Thesepathwaysprovidevaluableinsightsfortheaviationsectortomakenet-zerotransitionplans.However,itremainschallengingfortheaviationcommunitytomeaningfullycompareacrosstheexistingnet-zerotransitionpathwaysforseveralreasons.Firstly,eachscenariomayhavedifferentbackgroundassumptionsaboutfactorsoutsidetheaviationsector,suchassocio-economicdriversofair

transportdemand,fuelprices,geopoliticaldevelopments,andthelevelofprioritytheaviationsectorgetsforscarceresources.Secondly,theexistingnet-zeropathwaysdifferinpurposeandscope.Forexample,somemayfocusonwhatwouldbeneededfortheaviationsectortoreachnetzeroby2050,combiningCO2emissionsreducedbyboththewithin-sectormitigationmeasuresaswellastheout-

3

of-sectorcarbonremovaltechnologiesandmarket-basedmeasures.Incontrast,otherroadmapsmayfocusonwhatlevelofCO2emissionsreductiontheaviationsectoriscapableofachievingby2050basedonthemaximumpotentialofthewithin-sectormitigationmeasures.Lastly,theexistingroadmapsadopteddifferentdemandmodelingapproaches.Someuseatop-downapproachwithpre-determineddemandgrowthrates,andthetransitionmeasuresareappliedontopofthisgrowthas‘gapfillers’toreducetheemissionstonetzeroby2050,whilesomeuseabottom-upapproachwhereaviationdemandgrowthismodeledtoreflecttheimpactsofdifferenttransitionmeasuresondemand.

Withoutcomprehensivelyassessingthecriticaldifferencesmentionedabove,itisdifficultforstakeholderstocomparethesenet-zerotransitionpathwaysandtheleversofactiontheyrelyupon.However,thereisnosuchanalysisthusfarinthisregard.Tofillthisgap,thisreportaimstoprovideaholisticreviewoffourteenmajorglobalandregionalnet-zeroCO2pathways,withafocusonwhatmodelingapproachestheseroadmapsadoptedintheiranalysis,whatmitigationoptionsareconsidered,whatdevelopmentswouldbeneededintheseoptionsfortheaviationsectortostayontrackwiththenet-zerotransition,andhowmuchCO2emissionsreductionthesetransitionmeasureswouldcollectivelycontributetomakingtheaviationsectorgeneratezeroCO2emissionsby2050.Table1showsthefourteenroadmapsreviewedinthisreport.

2.RoadmapScope

Thenet-zeroroadmapsselectedinthisreportallhavetheirownscope(Table2).Intermsofregionalcoverage,tenroadmapscovertheglobalaviationmarket,twofocusoninternationalaviation,andtwolookatacertainregionalmarketspecifically.Theroadmapsalsodifferintheiraviationactivitycoverage.TheIATA,ATAG,IEA,andDESTINATION2050roadmapsfocusoncommercialpassengertrafficonly,whileDrayetal.(2022)andICCTcovercommercialpassengerandcargotraffic.RoadmapsdevelopedbyICAO,theUSFAA,andMPPcoverawiderscope,wheresomeevencoveralltypesofairtraffic,includingmilitaryandgovernmentflightsandgeneralaviation.

Inaddition,theboundaryconditionforthelifecycleofaviationfuelsisdifferentacrosstheroadmaps.Forexample,eightofthefourteenroadmapsconsiderjusttheTank-to-Wake(TTW)portionoftheemissionsofconventionaljetfuel,whichonlycoverstheemissionsgeneratedfromthecombustionofthefuelontheaircraft.TheremainingsixroadmapsusetheWell-to-Wake(WTW),orfulllifecycleofconventionalfuel,whichcoversemissionsfromboththefuelproductionandthecombustionofconventionaljetfuel.Alltheroadmaps,however,considerthelifecycleemissionsofSustainableAviationFuel(SAF),giventhatthereductionsinCO2ofSAFaregainedduringtheWell-to-Tank(WTT)

portion,whichcoverstheemissionsgeneratedinthefuelproductionphases.Forthisportionofthelifecycle(WTT),allreportsconsiderCO2e,i.e.,theCO2plusanyotheremissionsgeneratedduringtheproductionofthefuelorcollectionofthefeedstock.FiveroadmapsapplyaCO2emetrictotheTTWportionofthelifecycle,accountingforaviation’snon-CO2emissionsduringtheflightoperationphase.

Table2alsoshowsifmarket-basedmeasures(MBMs)andcarbonremovalshavearoleasthe‘out-of-sector’mitigationmeasuresintheselectedroadmaps.MBMsincludetheEUEmissionsTradingSchemes(ETS)andtheICAO’sCarbonOffsettingandReductionSchemeforInternationalAviation(CORSIA).Carbonremovalstypicallyconsidertechnologiessuchascarboncaptureandstorage(CCS)anddirectaircapture(DAC)toabsorbCO2emissionsgeneratedfromindustrialprocessesorevenfromatmosphericair.EightroadmapsreviewedinthisstudyrelyonMBMsandcarbonremovalsascritical‘out-of-sector’measurestohelptheaviationsectorreachnetzeroby2050.Notably,whennotconsideredastandaloneemissionsmitigationoption,CCSandDACareoftenassumedtoplayakeyroleinsupplyingCO2asthefeedstockforproducingpower-to-liquid(PtL)fuels;therefore,developingcarbonremovaltechnologiesiscriticalforallnet-zerotransitionscenariosreviewed.

Table2:Roadmapscope,jetfuellifecycleemissionsboundary,andtheroleofMBMs/carbonremovals.

4

ScenarioName

RegionCoverage

AviationActivityCoverage

TTW

EmissionsScope

Aviationfuel

lifecycleboundary

Reachingnetzeroby2050throughMBMs/Carbon

Removals(Y/N)

IATARoadmapS2

Global

Commercialpassenger

CO2only

TTW

Y

IEANet-Zero2050Roadmap

Global

Commercialpassenger

CO2only

TTW1

Y

ICAOLTAGS2

(International),Mid

Internationalaviation

Commercialpassenger+cargo+businessjet

CO2only

TTW

N

ICAOLTAGS3

(International),Mid

Internationalaviation

Commercialpassenger+cargo+businessjet

CO2only

TTW

N

ATAGWaypointS1

Global

Commercialpassenger

CO2only

TTW

Y

ATAGWaypointS2

Global

Commercialpassenger

CO2only

TTW

Y

ATAGWaypointS3

Global

Commercialpassenger

CO2only

TTW

Y

DESTINATION2050(EU+)

Europe(allflightswithinand

departingfromtheEU+region3)

Commercialpassenger

CO2only

TTW

Y

ICCTBreakthrough

Global

Commercialpassenger+cargo

CO2only

WTW2

N

MPPPRU

Global

Commercialpassenger+cargo,publicsector(e.g.,military,government),

andgeneralaviation

CO2+non-CO2

WTW

Y

MPPORE

Global

Commercialpassenger+cargo,publicsector(e.g.,military,government),

andgeneralaviation

CO2+non-CO2

WTW

Y

Drayetal.(2022)Biofuel+PtL,Mid

Global

Commercialpassenger+cargo

CO2+non-CO2

WTW

N

Drayetal.(2022)

Biofuel+Hydrogen,Mid

Global

Commercialpassenger+cargo

CO2+non-CO2

WTW

N

USAviationClimateActionPlan

DomesticUS+allinternational

flightsdepartingfromUSairports

Commercialpassenger+cargo,businessjet,andgeneralaviation

CO2+non-CO2

WTW

N

Note:

1AlthoughonlyTTWisconsideredintheIEAaviationmodel,theemissionsrelatedtofuelextraction,refining,etc.,intheWTTphaseareaccountedforinthe

IEA’sglobalenergyandclimatemodel(GEC),

ofwhichaviationisapart.

2Onaverage,WTWemissionsoffossiljetAfuelareabout20%higherthantheTTWemissions.

3EU+regioncoversEU27,theUnitedKingdom(UK),andtheEuropeanFreeTradeAssociation(EFTA).

3.ComparingModelInput,Assumptions,andModelOutputoftheRoadmaps

Theforward-lookingnatureoftheroadmapsmeansthatregardlessofwhatnet-zeropathwaysaroadmapfollows,itwouldrequireamodeltoprojectCO2emissionsfromtheaviationsectorbasedondifferenttechnological,operational,fuel,andeconomicassumptions.Alltheroadmapsreviewedinthispaperuseamodelingapproachtodifferent

extentsandmakedifferentassumptionsintheirmodelstoprojectCO2emissionsoftheaviationsectorto2050.Thissectioncomparesthemodelinputsandkeyassumptionsoftheselectedroadmapsandthendiscussesdifferencesinthecorrespondingmodeloutputsindetail.

5

3.1ModelInputandKeyAssumptions

Trafficdemandforairtransportisakeydriveroftheindustry’semissions.Howfastthedemandwillgrowfromthecurrentleveldirectlyimpactstheamountof

CO2emissionstheindustryneedstoabateby2050.Theselectedroadmapsadopteddifferentapproachestoprojectthedemand(Table3).

Table3:Airtrafficdemandprojectionsintheselectedroadmaps.

ScenarioName

Demand

modellingapproach

Demandresponse

Multipledemandscenarios

CAGR1

(2019-50)

Demandmetric

Demandin2030

(trillions)2

Demandin2050

(trillions)2

IATARoadmapS2

Bottom-up3

No

N

2.9%

RPK

12.71

21.55

IEANet-Zero

2050Roadmap

Bottom-up

Yes

N

2.1%

PKM

(sameasRPK)

10.97

16.55

ICAOLTAGS2(International),Mid

Top-down

No

Y,Mid

3.8%

RPK

8.10

13.12

ICAOLTAGS3(International),Mid

Top-down

No

Y,Mid

3.8%

RPK

8.10

13.12

ICCT

Breakthrough

Top-down

Yes

Y,Central

2.7%

RPK

11.73

19.96

MPPPRU

Top-down

No4

N

2.5%

RPK

10.64

19.22

MPPORE

Top-down

No

N

2.5%

RPK

10.64

19.22

Drayetal.

(2022)Biofuel+PtL,Mid

Bottom-up

Yes

Y,Mid

3.4%

RPK

13.10

24.24

Drayetal.

(2022)Biofuel+Hydrogen,Mid

Bottom-up

Yes

Y,Mid

3.3%

RPK

13.10

23.26

ATAGWaypointS1

Top-down

No

Y,Central

3.1%

RPK

12.39

22.35

ATAGWaypointS2

Top-down

No

Y,Central

3.1%

RPK

12.39

22.35

ATAGWaypointS3

Top-down

No

Y,Central

3.1%

RPK

12.39

22.35

DESTINATION2050(EU+)

Top-down

Yes

N

2.0%

Passengers

Enplanements

0.9billion

1.4billion

USAviation

ClimateActionPlan

Top-down

No

N

3.3%

RPM

1.31

(2.11inRPK)

2.90

(4.67inRPK)

Notes:1ICAOLTAGroadmapsCAGRcovers2018-2050;DESTINATION2050roadmapCAGRalsocovers2018-2050.

2Thereporteddemandisfordifferentgeographiccoverage;seeTable2Regioncoverage.

3AlthoughtheIATAroadmapusestheAIMmodel,thedemandforecastsarealignedwiththeIATApassengerforecast.

4Demandchangesduetovideoconferencing,modeshifts,etc.,arenotmodeledinMPP’smainscenariosbutassensitivityanalysis.

Atop-downapproachusesapre-determinedcompoundannualgrowthrate(CAGR)betweenthebaseyearand2050toextrapolateairtrafficdemandby2050.Underthisapproach,demandgrowthisamodelinput.Withthispre-determineddemandgrowthrate,CO2emissionsassociatedwiththe

demandunderthebusiness-as-usualcase(i.e.energyforaviationisstill100%providedbypetroleum-basedjetfuelby2050)areestimatedasthebaseline.Then,differentmitigationoptionsareappliedtoreduceemissionsfromthebaselineleveluntiltheindustryreachesnetzeroby2050.

6

Asaresult,thetransitionmeasuresarethe‘gapfillers’betweenthebaselineCO2emissionsandthenet-zeroemissions.Somestudiesassumeanenergyefficiencygainthroughtechnologyembeddedintothisgrowth,sothebaselineemissionsgrowslowerthanthedemand(IATAS2,forexample).Otheranalysesfreezetechnologyatagivenyearandextrapolateemissionsatthesamegrowthrateasthetrafficgrowth(USAviationClimateActionPlan).

Incomparison,someroadmapsadoptabottom-upapproachthatprojectsthedemandusingeconometricmodels,wheredemandgrowthmeasuredbyCAGRisamodeloutputratherthanapre-determinedvalue.Hence,thebottom-upmodelsenableroadmapstoadjustthedemandgrowthbasedontheimpactsofvariousfactorsondemandduringthenet-zerotransition.Factorsthatmayaffectaviationdemandincludethehigherpriceofairtravelduetoeconomicmeasuresonsustainability(e.g.theEUEmissionsTradingSchemes),thehigherpriceofairtravelduetoincreasedcostoftheenergytransitioninaviation(e.g.highercostsofusingSAF),thechangingconsumerbehavior(e.g.moreteleconferencingratherthanbusinesstravel),anddemandmanagementpolicymeasures(e.g.banningshort-haulflights).Withthisbottom-upapproach,aviationdemandgrowthanditscorrespondingtotalCO2emissionscouldchangewiththeimpactofthenet-zerotransitionondemandaswellastheemissionsreductionfromthetransitionmeasuresapplied.

Notably,atop-downmodelcouldstillexogenouslycapturethepotentialpriceimpactondemandbyadjustingitspre-determinedCAGRtoalowervaluebasedontheirassumedpriceelasticities(e.g.theICCTBreakthroughandDESTINATION2050).Similarly,abottom-upmodelmayturnoffthedemandresponsemechanismtopricechangesinitsdemandforecasts,suchastheIATARoadmap.Therefore,thedemandmodelingapproachandthedemandresponsemechanismshowninTable3couldbe

decoupledfeaturesdependingonthespecificusecase.

AsshowninTable3,themajorityoftheroadmapsusethetop-downapproach,whereapre-determinedCAGRofdemandisusedasamodelinput.Incomparison,thefourtransitionpathwaysdevelopedbyIATA,IEA,andDray,etal.(2022)projectedthedemandinabottom-upmanner,wheretheyallusedtheopen-source,econometric-basedUCLAviationIntegratedModel(AIM2015)intheirdemandforecasting(althoughtheIATAroadmapdoesnotusethedemandresponsefunctionintheAIMmodel).Thedemandgrowthis,therefore,oneofthemodeloutputsintheseroadmaps.AnexampleonthispointisDrayetal.(2022),wherethedemandgrowth(middledemandscenario)forthebio-SAFbridgingpower-to-liquid(PtL)scenariois3.4%peryearwhiledemandgrowthforthebio-SAFbridgingliquidhydrogen(LH2)scenariois3.3%,despitebothusingthesame‘middledemand’setofexternalsocioeconomicdemanddrivers.

Tobetterreflecttheuncertaintiesinfutureaviation

demand,eightroadmapshavemultiplescenarioson

thedemandgrowthrates.However,onlyDrayetal.

(2022)andICAOLTAGprovidedpossibletransition

pathwaysunderallthreedemandscenarios.The

remainingsixroadmapsonlyusedtheircentral

demandgrowthscenariosthroughouttheanalysesor

conductedseparatesensitivityanalysesforother

demandscenarios.Table3showsthedemandgrowth

rates(CAGR)usedintheselectedroadmaps.Notably,

alltheglobalroadmaps(seeTable2)producecomparabledemandintheircorrespondingcentral

demandscenariosby2030andby2050,exceptfor

theIEANetZero2050roadmap.Thisisbecausethe

IEAroadmapreliesheavilyonavoideddemand(by20%in2050comparedwiththebaseline)fromdemand

managementandeconomicmeasures,makingitsdemandgrowthover2019-2050thelowestat2.1%peryearamongallthescenarios.

7

Table4:Comparisonofthekeyassumptionsontransitionmeasuresintheroadmaps.

ScenarioName

Technologyefficiency

improvement(MJ/RPKp.a.)

Operationalefficiency

improvement(MJ/RPKp.a.)

SAF

shareby20301

AverageSAFcost($/tonne)by20302

SAF

shareby20501

AverageSAFcost($/tonne)by20502

PtL

entryyear

Hydrogenaircraftentryyear

Electricaircraftentryyear

Hydrogen/Electricshareby20501

IATARoadmapS2

2019-2050:-1.1%2019-2050:-0.2%

6%

N/A

90%

N/A

2021

2030

N/A

5%

IEANet-Zero2050Roadmap

2019-2050:-2.0%

11%

N/A

70%

N/A

2030

By2040

By2040

11%

ICAOLTAGS2

(International),Mid

2018-2050:-0.9%2018-2050:-0.3%

13%

1432

(1.79$/L)

72%3

1440

(1.80$/L)

2021

N/A

N/A

N/A

ICAOLTAGS3

(International),Mid

2018-2050:-0.2%2018-2050:-0.4%

21%

1360

(1.70$/L)

98%

1336

(1.67$/L)

2021

2045

N/A

2%

ICCTBreakthrough

2019-2034:-1.1%2035-2050:-2.2%

2019-2050:-0.6%

15%

1464

(1.83$/L)

79%

1184

(1.34$/L)

2030

2035,regionalandNBupto3400km

2030,9-19seatcommutersonlyupto500km

21%

MPPPRU

2019-2030:-1.5%2030-2050:-2.0%

13%

1417

86%

1096

2025

2040,upto2500km

2040,upto

1000km

15%

MPPORE

2019-2030:-1.5%2030-2050:-2.0%

15%

1178

66%

765

2025

2035,norangelimitation

2035,upto

1000km

34%

Drayetal.(2022)Biofuel+PtL,Mid

ModeledModeled

10%

1000

(1.25$/L4)

100%

592

(0.74$/L)

2025

2035,uptolargeWBaircraft

2045,uptolargeNBaircraft

negligible

Drayetal.(2022)

Biofuel+Hydrogen,Mid

ModeledModeled

10%

1032

(1.29$/L4)

47%

904

(1.13$/L)

2025

2035,uptolargeWBaircraft,

2045,uptolargeNBaircraft

53%

ATAGWaypointS1

2019-2050:-1.1%2019-2050:-0.2%

N/A

1061

90%

878

2030

N/A

N/A

N/A

ATAGWaypointS2

2019-2050:-1.1%2019-2050:-0.1%

N/A

1061

90%

878

2030

N/A

N/A

N/A

ATAGWaypointS3

2019-2050:-1.1%2019-2050:-0.1%

N/A

1061

90%

878

2030

2035,100-210seatsNB

2025,upto19seats

10%

DESTINATION2050(EU+)

2018-2050:-1.2%2018-2050:-0.3%

6%

2686

(2274€/t)

66%

1949

(1650€/t)

2030

2035,NBintra-EU+only,upto2000

km,165seats

2030,smallclassaircraft

21%

USAviationClimateActionPlan

2019-2030:-1.1%2030-2050:NA

2019-2030:-0.4%2030-2050:NA

10%

N/A

88%

N/A

2025

N/A

N/A

N/A

Note:1Shareintotalflightphaseenergyuse.

2WeightedaverageSAFcostsbySAFvolumesofvariousSAFtypesifvolumesareavailable,ifnot,simpleaverageofallSAFtypes.

3Theremaining28%offuelsareprovidedbylowercarbonpetroleumfuels(LCAF)intheICAOS2scenario.

4Drayetal.provideSAFcostsintheearly2020sinsteadof2030.

8

Besidesairtransportdemandgrowth,theselectedroadmapsalsomakeassumptionsaboutotherkeyinputvariablesthathavedirectimpactsonthefinalCO2emissionsby2050(Table4).Typically,assumptionsaremadeforvariousmitigationmeasures,includingtechnologyefficiencyimprovement,operationalefficiencyimprovement,theshareofSustainableAviationFuels(SAFs)inthetotalaviationenergydemandandtheexpectedSAFcosts,theshareofhydrogenandelectricityinthetotalaviationenergydemand,andtheentryintoserviceyearsofdifferentaircrafttechnologies.Table4providesasummaryoftheassumptionsmadeonthesecriticalmodelinputvariablesintheselectedroadmaps.

Emissionsreductionfromconventionalaircrafttechnologyefficiencyimprovementisaresultofreplacingoldaircraftwithnewerandmoreenergy-efficientaircraftinthefleet.Theimprovementisoftenmeasuredbyareductioninenergyuseinmegajoules(MJ)perrevenuepassengerkilometers(RPK).Giventhatcurrently,thereareonlyafewnewaircraftprojectsunderdevelopmentandthefleetreplacementrateisgenerallylow,mostoftheroadmapsassume,onaverage,about1.0%peryearimprovementinenergyefficiencyfromtodayto2050.However,someroadmapshavemoreaggressiveassumptionsontheannualfuelefficiencyimprovement,suchastheICCTBreakthroughroadmap,whichassumesa2.2%peryearfuelefficiencyimprovementfromnewtypesofaircraftintroducedsince2035.

Improvementsinaircraftoperationalefficiencycouldalsocontributetoemissionsreduction.Optionsinthistransitionmeasureincludeanincreaseinaircraftloadfactor,optimizedairtrafficmanagement,single-enginetaxi,etc.Notably,notallroadmapsprovidespecificemissionsreductionestimatesfromindividual

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论