版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS2.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为().A. B. C. D.3.如图,△ABC是⊙O的内接三角形,∠A=55°,则∠OCB为()A.35° B.45° C.55° D.65°4.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5075.如图,过以为直径的半圆上一点作,交于点,已知,,则的长为()A.7 B.8 C.9 D.106.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35° B.45° C.55° D.65°7.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A.开口向下B.当x=-1,时,y有最大值是2C.对称轴是x=-1D.顶点坐标是(1,2)8.关于的一元二次方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根9.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.10.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.11.下列方程中,是关于的一元二次方程的是()A. B. C. D.12.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4 B.3 C.2 D.1二、填空题(每题4分,共24分)13.半径为10cm的半圆围成一个圆锥,则这个圆锥的高是__cm.14.一个不透明的袋子中装有除颜色外其他都相同的2个红球和1个黄球,随机摸出一个小球后,放回并摇匀,再随机摸岀一个,则两次都摸到黄球的概率为__________.15.如图,为测量某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=10m,EC=5m,CD=8m,则河的宽度AB长为______________m.16.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.17.两个函数和(abc≠0)的图象如图所示,请直接写出关于x的不等式的解集_______________.18.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则线段ON的长为_____.三、解答题(共78分)19.(8分)如图,直线与⊙相离,于点,与⊙相交于点,.是直线上一点,连结并延长交⊙于另一点,且.(1)求证:是⊙的切线;(2)若⊙的半径为,求线段的长.20.(8分)如图,一次函数和反比例函数的图象相交于两点,点的横坐标为1.(1)求的值及,两点的坐标(1)当时,求的取值范围.21.(8分)金牛区某学校开展“数学走进生活”的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为,测得楼AB的底部B处的俯角为.已知D处距地面高度为12m,则这个小组测得大楼AB的高度是多少?(结果保留整数.参考数据:,,)22.(10分)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).23.(10分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有3个不同的操作实验题目,物理题目用序号①、②、③表示,化学题目用字母a、b、c表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)小李同学抽到物理实验题目①这是一个事件(填“必然”、“不可能”或“随机”).(2)小张同学对物理的①、②和化学的c号实验准备得较好,请用画树形图(或列表)的方法,求他同时抽到两科都准备得较好的实验题目的概率.24.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.25.(12分)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.26.郑万高铁开通后,极大地方便了沿线城市人民的出行.高铁开通前,从地到地需乘普速列车绕行地,已知,车速为高铁开通后,可从地乘高铁以的速度直达地,其中在的北偏东方向,在的南偏东方向.甲、乙两人分别乘高铁与普速列车同时从出发到地,结果乙比甲晚到小时.试求两地的距离.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【点睛】本题考查科学计算器的使用方法,属基础题.2、B【分析】取AB的中点M,连接CM,EM,当CE=CM+EM时,CE的值最大,根据旋转的性质得到AC′=AC=2,由三角形的中位线的性质得到EMAC′=2,根据勾股定理得到AB=2,即可得到结论.【详解】取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大.∵将直角边AC绕A点逆时针旋转至AC′,∴AC′=AC=2.∵E为BC′的中点,∴EMAC′=2.∵∠ACB=90°,AC=BC=2,∴AB=2,∴CMAB,∴CE=CM+EM.故选B.【点睛】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.3、A【分析】首先根据圆周角定理求得∠BOC,然后根据三角形内角和定理和等腰三角形的性质即可求得∠OCB.【详解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=(180°-∠BOC)=35°,故答案为A.【点睛】本题主要考查了圆周角定理、等腰三角形的性质以及三角形的内角和定理,掌握并灵活利用相关性质定理是解答本题的关键.4、B【分析】根据年利润平均增长率,列出变化增长前后的关系方程式进行求解.【详解】设这两年的年利润平均增长率为x,列方程为:300(1+x)2=507.故选B.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是怎么利用年利润平均增长率列式计算.5、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长.【详解】∵AB为直径,
∴,
∵CD⊥AB,
∴,
∴,
∴,
∵,BC=6,
∴,∴,∴,∵,∴,∴.
故选:B.【点睛】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.6、C【解析】试题分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠C=90°,又由直角三角形两锐角互余的关系即可求得∠B的度数:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选C.考点:1.圆周角定理;2.直角三角形两锐角的关系.7、D【解析】根据二次函数的性质对各选项进行判断.【详解】A、由二次函数的解析式y=(x+1)2+2,可知系数>1,故函数图像开口向上.故A项错误;B、将x=﹣1代入解析式,得到y=6,故B项错误;C、由二次函数的顶点式y=(x+1)2+2可知对称轴为x=1,故C项错误;D、函数的顶点式y=(x+1)2+2可知该函数的顶点坐标是(1,2),故D项正确.故选D.【点睛】本题主要考查二次函数的图像与性质,理解二次函数的顶点式是解答此题的关键.8、A【分析】先写出的值,计算的值进行判断.【详解】
方程有两个不相等的实数根故选A【点睛】本题考查一元二次方程根的判别式,是常见考点,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记公式并灵活应用公式是解题关键.9、C【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.10、B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.11、C【解析】只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程.【详解】解:A选项,缺少a≠0条件,不是一元二次方程;B选项,分母上有未知数,是分式方程,不是一元二次方程;C选项,经整理后得x2+x=0,是关于x的一元二次方程;D选项,经整理后是一元一次方程,不是一元二次方程;故选择C.【点睛】本题考查了一元二次方程的定义.12、B【解析】根据中心对称图形的概念判断即可.【详解】矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形.故选B.【点睛】本题考查了中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、【分析】由半圆的半径可得出圆锥的母线及底面半径的长度,利用勾股定理即可求出圆锥的高.【详解】设底面圆的半径为r.∵半径为10cm的半圆围成一个圆锥,∴圆锥的母线l=10cm,∴,解得:r=5(cm),∴圆锥的高h(cm).故答案为5.【点睛】本题考查了圆锥的计算,利用勾股定理求出圆锥的高是解题的关键.14、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.【详解】画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有1种结果,
∴两次都摸到黄球的概率为;
故答案为:.【点睛】此题考查列表法或树状图法求概率.解题关键在于掌握注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.15、16【分析】先证明,然后再根据相似三角形的性质求解即可.【详解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本题答案为:16.【点睛】本题考查了相似三角形的应用,准确识图,熟练掌握和灵活运用相似三角形的判定定理与性质定理是解题的关键.16、【解析】连接OE、OD′,作OH⊥ED′于H,通过证得AEO≌△HEO(AAS),AE=EH=ED=2,设OB=OE=x.则AO=6﹣x,根据勾股定理得x2=22+(6﹣x)2,解方程即可求得结论.【详解】解:连接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四边形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切线,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴设OB=OE=x.则AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案为:.【点睛】本题是圆的综合题目,考查了切线的性质和判定、正方形的性质、勾股定理,方程,全等三角形的判定与性质等知识;本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.17、或;【分析】由题意可知关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,由于反比例函数的图象有两个分支,因此可以分开来考虑.【详解】解:关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,观察图象的交点坐标可得:或.【点睛】本题考查一次函数的图象和性质、反比例函数的图象和性质以及一次函数、反比例函数与一次不等式的关系,理解不等式与一次函数和反比例函数的关系式解决问题的关键.18、1.【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH,MH,MB,CH,CO,然后证明△CON∽△CHM,再利用相似三角形的性质可计算出ON的长.【详解】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,MH⊥AC,MB⊥BC∴BM=MH=,∴AB=2+,∴AC=AB=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故答案为:1.【点睛】本题主要考查正方形的性质及相似三角形的判定及性质,掌握正方形的性质及相似三角形的性质是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)【解析】(1)连结,则,,已知AB=AC,故,由可得,则,证得,即AB是⊙O的切线.(2)在直角三角形AOB中,OA=5,OB=3,可求得AB=AC=4.在直角三角形ACP中,由勾股定理可求得,过点O做OD⊥BC于点D,可得△ODP∽△CAP,则有,代入线段长度即可求得PD,进而利用垂径定理求得BP.【详解】(1)证明:如图,连结,则,,∵,即,即故是⊙的切线;(2)由(1)知:而,由勾股定理,得:,过作于,则在和中,∽【点睛】本题考查了勾股定理,相似三角形的性质及判断,垂径定理,圆与直线的位置关系,解本题的关键是掌握常见求线段的方法,将知识点结合起来解题.20、(1);(1)或【分析】(1)将x=1代入求得A(1,3),将A(1,3)代入求得,解方程组得到B点的坐标为(-6,-1);
(1)反比例函数与一次函数的交点坐标即可得到结论.【详解】解:(1)将代入,得,∴.将代入,得,∴,∴,解得(舍去)或.将代入,得,∴.(1)由图可知,当时,或.【点睛】此题考查反比例函数与一次函数的交点问题,正确的理解题意是解题的关键.21、这个小组测得大楼AB的高度是31m.【分析】过点D作于点E,本题涉及到两个直角三角形△BDE、△ADE,通过解这两个直角三角形求得DE、AE的长度,进而可解即可求出答案.【详解】过点D作于点E,则,在中,,∵,∴,∴.在中,,∵,,∴,∴.答:这个小组测得大楼AB的高度是31m.【点睛】本题考查解直角三角形的应用-仰角俯角问题.解直角梯形可以通过作高线转化为解直角三角形和矩形的问题.22、见解析【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个等腰三角形,俯视图为两个同心圆(中间有圆心).【详解】解:三视图如图所示:【点睛】本题考查简单组合体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.23、(1)随机;(2)P(同时抽到两科都准备得较好)=.【分析】(1)根据三种事件的特点,即可确定答案;(2)先画出树状图,即可快速求出所求事件的概率.【详解】解:(1)由题意可知,小李同学抽到物理实验题目①这是一个随机事件,故答案为:随机;(2)树状图如下图所示:则P(同时抽到两科都准备得较好)=.【点睛】本题考查了求概率的列表法与树状图法,弄清题意,画出树状图或正确的列表是解答本题的关键.24、(1)图形见解析;(2)P点坐标为(,﹣1).【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;由点A的对应点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津滨海汽车工程职业学院《信号与系统B》2023-2024学年第一学期期末试卷
- 工业版合同范例
- 婚介会员服务合同范例
- 欠款抵车合同范例
- 人事劳动合同范例
- 养殖创业合伙合同范例
- 叠合板生产合同范例
- 建筑沙石采购合同范例
- 展会票务合同范例
- 房屋名称变更合同范例
- 2024年安徽省高校分类考试对口招生语文试卷真题(含答案)
- 《2024年 《法学引注手册》示例》范文
- 光伏车棚施工方案
- 中华人民共和国职业分类大典是(专业职业分类明细)
- 2024年检察院招录书记员考试法律基础知识及答案
- 国开2024年秋季《形势与政策》大作业答案
- 北师大版四年级上册除法竖式计算题300道及答案
- 2024-2030年中国橡胶伸缩缝行业市场发展趋势与前景展望战略分析报告
- 2021-2022学年内蒙古呼和浩特市高一上学期期末考试英语试题(解析版)
- 12SG121-1 施工图结构设计总说明
- DL∕T 2447-2021 水电站防水淹厂房安全检查技术规程
评论
0/150
提交评论