2022年江苏省淮安市城北开明中学数学九上期末综合测试试题含解析_第1页
2022年江苏省淮安市城北开明中学数学九上期末综合测试试题含解析_第2页
2022年江苏省淮安市城北开明中学数学九上期末综合测试试题含解析_第3页
2022年江苏省淮安市城北开明中学数学九上期末综合测试试题含解析_第4页
2022年江苏省淮安市城北开明中学数学九上期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:X﹣1013y﹣33下列结论:(1)abc<0;(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0;(4)抛物线与坐标轴有两个交点;(5)x=3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的个数为()A.5个 B.4个 C.3个 D.2个2.如图,在△中,∥,如果,,,那么的值为()A. B. C. D.3.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为()A.1cm B.7cm C.3cm或4cm D.1cm或7cm4.已知,点是线段上的黄金分割点,且,则的长为()A. B. C. D.5.如图,的直径,是的弦,,垂足为,且,则的长为()A.10 B.12 C.16 D.186.如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为()A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4)C.(2,﹣1) D.(8,﹣4)7.如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为().A. B. C. D.8.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.9.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)10.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣ D.二、填空题(每小题3分,共24分)11.已知:等边△ABC,点P是直线BC上一点,且PC:BC=1:4,则tan∠APB=_______,12.如图,点D、E分别是线段AB、AC上一点∠AED=∠B,若AB=8,BC=7,AE=5则,则DE=_____.13.如图,四边形是菱形,经过点、、与相交于点,连接、,若,则的度数为__________.14.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.15.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.16.如图,在平面直角坐标系xOy中,点A在函数y=(x>0)的图象上,AC⊥x轴于点C,连接OA,则△OAC面积为_____.17.如图,半圆的半径为4,初始状态下其直径平行于直线.现让半圆沿直线进行无滑动滚动,直到半圆的直径与直线重合为止.在这个滚动过程中,圆心运动路径的长度等于_________.18.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.三、解答题(共66分)19.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研其性质——运用函数解决问题”的学习过程.如图,在平面直角坐标系中己经绘制了一条直线.另一函数与的函数关系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直线的解析式;(2)请根据列表中的数据,绘制出函数的近似图像;(3)请根据所学知识并结合上述信息拟合出函数的解折式,并求出与的交点坐标.20.(6分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求△ABC的面积;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.21.(6分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.22.(8分)如图①,在中,,是边上任意一点(点与点,不重合),以为一直角边作,,连接,.若和是等腰直角三角形.(1)猜想线段,之间的数量关系及所在直线的位置关系,直接写出结论;(2)现将图①中的绕着点顺时针旋转,得到图②,请判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.23.(8分)(1)计算:;(2)解方程.24.(8分)如图,在平行四边形ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,请探究平行四边形ABCD的角和边需要满足的条件.25.(10分)如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,DE⊥AB于点E.(1)求证:△ABC∽△ADE;(2)如果AC=8,BC=6,CD=3,求AE的长.26.(10分)如图,是等边三角形,顺时针方向旋转后能与重合.(1)旋转中心是___________,旋转角度是___________度,(2)连接,证明:为等边三角形.

参考答案一、选择题(每小题3分,共30分)1、C【解析】先根据表格中的数据大体画出抛物线的图象,进一步即可判断a、b、c的符号,进而可判断(1);由点(0,3)和(3,3)在抛物线上可求出抛物线的对称轴,然后结合抛物线的开口方向并利用二次函数的性质即可判断(2);由(2)的结论可知:当x=4和x=﹣1时对应的函数值相同,进而可判断(3);根据画出的抛物线的图象即可判断(4);由表中的数据可知:当x=3时,二次函数y=ax2+bx+c=3,进一步即可判断(5),从而可得答案.【详解】解:(1)画出抛物线的草图如图所示:则易得:a<0,b>0,c>0,∴abc<0,故(1)正确;(2)由表格可知:点(0,3)和(3,3)在抛物线上,且此两点关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=,因为a<0,所以,当x>时,y的值随x值的增大而减小,故(2)错误;(3)∵抛物线的对称轴为直线x=,∴当x=4和x=﹣1时对应的函数值相同,∵当x=-1时,y<0,∴当x=4时,y<0,即16a+4b+c<0,故(3)正确;(4)由图象可知,抛物线与x轴有两个交点,与y轴有一个交点,故(4)错误;(5)由表中的数据可知:当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b﹣1)x+c=0的一个根,故(5)正确;综上,结论正确的共有3个,故选:C.【点睛】本题考查了抛物线的图象和性质以及抛物线与一元二次方程的关系,根据表格中的数据大体画出函数图象、熟练掌握二次函数的性质是解题的关键.2、B【分析】由平行线分线段成比例可得到,从而AC的长度可求.【详解】∵∥∴∴∴故选B【点睛】本题主要考查平行线分线段成比例,掌握平行线分线段成比例是解题的关键.3、D【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF-OE=1cm;当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF+OE=7cm.故选D.【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.4、A【分析】根据黄金分割点的定义和得出,代入数据即可得出AP的长度.【详解】解:由于P为线段AB=2的黄金分割点,且,

则.

故选:A.【点睛】本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.5、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.6、B【分析】E(﹣4,1)以O为位似中心,按比例尺1:1,把△EFO放大,则点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.【详解】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.所以点E′的坐标为(8,﹣4)或(﹣8,4).故选:B.【点睛】本题主要考查根据位似比求对应点的坐标,分情况讨论是解题的关键.7、C【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DC∥x轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标.【详解】∵Rt△OAB的顶点A(−2,4)在抛物线上,∴4=4a,解得a=1,∴抛物线为,∵点A(−2,4),∴B(−2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入,得,解得∴P故答案为:.【点睛】考查二次函数图象上点的坐标特征,坐标与图形变化-旋转,掌握旋转的性质是解题的关键.8、D【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到,借助相似三角形的性质即可解决问题.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴,∴S△DOE:S△AOC=,故选:D.【点睛】此题考查相似三角形的判定及性质,根据BE:EC=1:3得到同高两个三角形的底的关系是解题的关键,再利用相似三角形即可解答.9、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.10、A【解析】把点(1,-1)代入解析式得-1=,

解得k=-1.

故选A.二、填空题(每小题3分,共24分)11、或.【分析】过A作AD⊥BC于D,设等边△ABC的边长为4a,则DC=2a,AD=2a,PC=a,分类讨论:当P在BC的延长线上时,DP=DC+CP=2a+a=3a;当P点在线段BC上,即在P′的位置,则DP′=DC-CP′=a,然后分别利用正切的定义求解即可.【详解】解:如图,过A作AD⊥BC于D,设等边△ABC的边长为4a,则DC=2a,AD=2a,PC=a,当P在BC的延长线上时,DP=DC+CP=2a+a=3a,在Rt△ADP中,tan∠APD=;当P点在线段BC上,即在P′的位置,则DP′=DC-CP′=a,在Rt△ADP′中,tan∠AP′D=.故答案为:或.【点睛】本题考查解直角三角形;等边三角形的性质.12、【分析】先根据题意得出△AED∽△ABC,再由相似三角形的性质即可得出结论.【详解】∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴,∵AB=8,BC=7,AE=5,∴,解得ED=.故答案为:.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.13、【分析】根据菱形的性质得到∠ACB=∠DCB=(180°−∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【详解】解:∵四边形ABCD是菱形,∠D=78°,

∴∠ACB=∠DCB=(180°−∠D)=51°,

∵四边形AECD是圆内接四边形,

∴∠AEB=∠D=78°,

∴∠EAC=∠AEB−∠ACE=27°,

故答案为:27°.【点睛】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.14、【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:将-1、-2、-3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为.故答案为.【点睛】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.15、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【详解】如图,连接BF,

∵EF是AB的垂直平分线,

∴AF=BF,

∴,,在△BCF中,∴,∴.故答案为:.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.16、1【分析】根据反比例函数比例系数k的几何意义可得S△OAC=×2=1,再相加即可.【详解】解:∵函数y=(x>0)的图象经过点A,AC⊥x轴于点C,∴S△OAC=×2=1,故答案为1.【点睛】本题考查了反比例函数比例系数k的几何意义,掌握过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键.17、【分析】由图可知,圆心运动路径的长度主要分两部分求解,从初始状态到垂直状态,圆心一直在一条直线上;从垂直状态到重合状态,圆心运动轨迹是圆周,计算两部分结果,相加即可.【详解】由题意知:半圆的半径为4,∴从初始状态到垂直状态,圆心运动路径的长度=.∴从垂直状态到重合状态,圆心运动路径的长度=.即圆心运动路径的总长度=.故答案为.【点睛】本题主要考查了弧长公式和圆周公式,正确掌握弧长公式和圆周公式是解题的关键.18、小林【详解】观察图形可知,小林的成绩波动比较大,故小林是新手.

故答案是:小林.三、解答题(共66分)19、(1);(2)见解析;(3)交点为和【分析】(1)根据待定系数法即可求出直线的解析式;(2)描点连线即可;(3)根据图象得出函数为二次函数,顶点坐标为(-2,2),用待定系数法即可求出抛物线的解析式,解方程组即可得出与交点坐标.【详解】(1)设直线的解析式为y=kx+m.由图象可知,直线过点(6,0),(0,-3),∴,解得:,∴;(2)图象如图:(3)由图象可知:函数为抛物线,顶点为.设其解析式为:从表中选一点代入得:1=4a+2,解出:,∴,即.联立两个解析式:,解得:或,∴交点为和.【点睛】本题考查了二次函数的图象和性质.根据图象求出一次函数和二次函数的解析式是解答本题的关键.20、(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0)【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得或,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得,解得:,∴y=2x﹣1,当y=0,即2x﹣1=0,解得:x=,∴D(,0),∴BD=2﹣=,∴△ABC的面积=S△ABD+S△BCD=××1+××3=3;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)知,AB=,BC=3,∵MN⊥x轴于点N,∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时,有或,①当时,∴,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,∴﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当或时,∴,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.21、sinA=,cosA=,tanA=.【分析】根据勾股定理求出AB,根据锐角三角函数的定义解答即可.【详解】由勾股定理得,,则,,.【点睛】本题考查解直角三角形,解题的关键是利用勾股定理求出AB的长.22、(1)BE=AD,BE⊥AD;(2)BE=AD,BE⊥AD仍然成立,理由见解析【分析】(1)由CA=CB,CE=CD,∠ACB=90°易证△BCE≌△ACD,所以BE=AD,∠BEC=∠ADC,又因为∠EBC+∠BEC=90°,所以∠EBC+∠ADC=90°,即BE⊥AD;

(2)成立.设BE与AC的交点为点F,BE与AD的交点为点G,易证△ACD≌△BCE.得到AD=BE,∠CAD=∠CBE.再根据等量代换得到∠AFG+∠CAD=90°.即BE⊥AD.【详解】(1)BE=AD,BE⊥AD;在△BCE和△ACD中,∵,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,∴BE⊥AD.故答案为:BE=AD,BE⊥AD.(2)BE=AD,BE⊥AD仍然成立设BE与AC的交点为F,BE与AD的交点为G,如图∴,∴.在和中,∵∴.∴∵,∴,,∴BE⊥AD【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握性质定理是解题的关键.23、(1);(2)无解【分析】(1)先算开方,0指数幂,绝对值,再算加减;(2)两边同时乘以,去分母,再解整式方程.【详解】(1)解:原式==(2)解:两边同时乘以,得:经检验是原方程的增根,∴原方程无解.【点睛】考核知识点:解分式方程.把分式方程化为整式方程是关键.24、详见解析.【分析】三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别做射线EM,EN,EM,EN分别AB,CD于F,G使得∠BEM=∠AEN=60°,可证△BEF为等边三角形,即EB=EF,故B的对应点为F.根据SAS可证,即EA=GE,故A的对应点为G.由此可得:要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,平行四边形ABCD的角和边需要满足的条件是:∠ABC=60°,AB=BC.【详解】解:要使该模板旋转60°后,三个顶点仍在的边上,的角和边需要满足的条件是:∠ABC=60°,AB=BC理由如下:三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别做射线EM,EN,使得∠BEM=∠AEN=60°,∵AE⊥BC,即∠AEB=∠AEC=90°,∴∠BEM<∠BEA∴射线EM只能与AB边相交,记交点为F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论